scholarly journals The Dorsal Skinfold Chamber as a New Tympanic Membrane Wound Healing Model: Intravital Insights into the Pathophysiology of Epithelialized Wounds

2021 ◽  
pp. 1-15
Author(s):  
Daniel Strüder ◽  
Christoph Lachmann ◽  
Sara Maria van Bonn ◽  
Eberhard Grambow ◽  
Sebastian P. Schraven ◽  
...  

<b><i>Background:</i></b> Tympanic membrane perforations (TMPs) are a common complication of trauma and infection. Persisting perforations result from the unique location of the tympanic membrane. The wound is surrounded by air of the middle ear and the external auditory canal. The inadequate wound bed, growth factor, and blood supply lead to circular epithelialization of the perforation’s edge and premature interruption of defect closure. Orthotopic animal models use mechanical or chemical tympanic membrane laceration to identify bioactive wound dressings and overcome premature epithelialization. However, all orthotopic models essentially lack repetitive visualization of the biomaterial-wound interface. Therefore, recent progress in 3D printing of customized wound dressings has not yet been transferred to the unique wound setup of the TMP. Here, we present a novel application for the mice dorsal skinfold chamber (DSC) with an epithelialized full-thickness defect as TMP model. <b><i>Methods:</i></b> A circular 2-mm defect was cut into the extended dorsal skinfold using a biopsy punch. The skinfold was either perforated through both skin layers without prior preparation or perforated on 1 side, following resection of the opposing skin layer. In both groups, the wound was sealed with a coverslip or left unclosed (<i>n</i> = 4). All animals were examined for epithelialization of the edge (histology), size of the perforation (planimetry), neovascularization (repetitive intravital fluorescence microscopy), and inflammation (immunohistology). <b><i>Results:</i></b> The edge of the perforation was overgrown by the cornified squamous epithelium in all pre­parations. Reduction in the perforation’s size was enhanced by application of a coverslip. Microsurgical preparation before biopsy punch perforation and sealing with a coverslip enabled repetitive high-quality intravital fluorescence microscopy. However, spontaneous reduction of the perforation occurred frequently. Therefore, the direct biopsy punch perforation without microsurgical preparation was favorable: spontaneous reduction did not occur throughout 21 days. Moreover, the visualization of the neovascularization was sufficient in intravital microscopy. <b><i>Conclusions:</i></b> The DSC full-thickness defect is a valuable supplement to orthotopic TMP models. Repetitive intravital microscopy of the epithelialized edge enables investigation of the underlying pathophysiology during the transition from the inflammation to the proliferation phase of wound healing. Using established analysis procedures, the present model provides an effective platform for the screening of bioactive materials and transferring progress in tissue engineering to the special conditions of tympanic membrane wound healing.

2021 ◽  
Vol 8 (6) ◽  
Author(s):  
Yangkun Liu ◽  
JinChuan Fan ◽  
MingQi Lv ◽  
Kepeng She ◽  
Jiale Sun ◽  
...  

Abstract Damage to the skin causes physiological and functional issues. The most effective treatment approach is the use of wound dressings. Silk fibroin (SF) is a promising candidate biomaterial for regulating wound healing; however, its antibacterial properties and biological activity must be further improved. In this study, a photocrosslinking hydrogel was developed to treat full-thickness cutaneous wounds. The composite hydrogel (Ag–AV–SF hydrogel) was prepared by introducing the silver nanoparticles (AgNPs) and aloe vera (AV) as the modifiers. In vitro study exhibited great antibacterial ability, biocompatibility and cell-proliferation and -migration-promoting capacities. It also showed the pH-response releasing properties which release more AgNPs in a simulated chronic infection environment. The healing effect evaluation in vivo showed the healing-promoting ability of the Ag–AV–SF hydrogel was stronger than the single-modifiers groups, and the healing rate of it reached 97.02% on Day 21, higher than the commercial wound dressing, silver sulfadiazine (SS) cream on sale. Additionally, the histological and protein expression results showed that the Ag–AV–SF hydrogel has a greater effect on the pro-healing regenerative phenotype with M2 macrophages at the early stage, reconstructing the blood vessels networks and inhibiting the formation of scars. In summary, the Ag–AV–SF hydrogel developed in this study had good physical properties, overwhelming antibacterial properties, satisfactory biocompatibility and significantly promoting effect on cell proliferation, migration and wound healing. Overall, our results suggest that the Ag–AV–SF hydrogel we developed has great potential for improving the wound healing in clinical treatment.


2018 ◽  
Vol 46 (6) ◽  
pp. 2398-2409 ◽  
Author(s):  
Yi Wang ◽  
Ying Hu ◽  
Ben Ma ◽  
Fei Wang ◽  
Sheng Liu ◽  
...  

Objective This study was performed to investigate the effect of Nocardia rubra cell wall skeleton (N-CWS) on wound healing of full-thickness skin defects. Methods Two 2- × 2-cm full-thickness wounds, one on each side of the midline, were made on the back of 12 rats. One wound was covered with Vaseline gauze soaked in normal saline, whereas the other was covered with Vaseline gauze and N-CWS. Wound dressings were changed every other day from day 0 (wound creation) to day 11. Four of the 12 rats were killed on day 7, and biopsy samples were obtained for biochemical and histopathological analyses. The expression levels of CD31, CD68, and F4/80 in the tissues were examined immunohistologically. The expression of transforming growth factor (TGF)-β1 in the wound was determined by western blot. Results N-CWS increased the wound healing rate, reduced the complete wound healing time, and increased the expression levels of CD31, CD68, and F4/80 on day 7. The TGF-β1 expression level in the wound was significantly higher in the N-CWS group than in the control group on day 7. Conclusions N-CWS can activate macrophages, increase TGF-β1 expression, and enhance angiogenesis and thus accelerate cutaneous wound healing.


2020 ◽  
Vol 35 (2) ◽  
pp. 287-298
Author(s):  
Somaya Amer ◽  
Noha Attia ◽  
Samir Nouh ◽  
Mahmoud El-Kammar ◽  
Ahmed Korittum ◽  
...  

Purpose In this study, we aimed to determine the regenerative and antimicrobial impact of the electrospun nanofiber mats, with/without silver nanoparticles (AgNPs), on full-thickness skin wounds in rabbits. Methods Polyvinyl alcohol was combined with gelatin to provide biocompatible electrospun binary nanofiber mats. AgNPs were added to the polyvinyl alcohol/gelatin mixture to obtain ternary nanofiber-AgNPs mats. Binary and ternary nanofiber mats were characterized by scanning electron microscopy before being applied as wound dressings in vivo. Subsequently, wound healing was evaluated. Results Both nanofiber/nanofiber-AgNPs mats improved the microscopic quality of the healed skin, albeit without obvious acceleration of the healing rate. As well, both types of nanofiber mats were able to combat microbial invasion into the wound bed. Conclusions Both binary polyvinyl alcohol/gelatin and ternary polyvinyl alcohol/gelatin/AgNPs nanofiber mats developed in the present study depicted similar regenerative and antimicrobial potential when applied as full-thickness wound dressing. However, in comparison to the binary nanofiber mats, no obvious synergistic effect was observed after loading nanofibers with AgNPs.


Author(s):  
Mengna Li ◽  
Hongping Yu ◽  
Qin-Fei Ke ◽  
Changqing Zhang ◽  
You-Shui Gao ◽  
...  

Natural polymer hydrogels widely emerged as wound dressings, but they had not enough bioactivity to accelerate angiogenesis and re-epithelialization. Herein, we firstly constructed a therapeutic system in which endothelin-1 (ET-1)...


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 643-P ◽  
Author(s):  
YANFEI HAN ◽  
LINDONG LI ◽  
YANJUN LIU ◽  
YOU WANG ◽  
CHUNHUA YAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document