scholarly journals Wide-band metamaterial perfect absorber through double arrow shape printed on a thin dielectric

2021 ◽  
Vol 10 (5) ◽  
pp. 2488-2495
Author(s):  
Siti Adlina Md Ali ◽  
Maisarah Abu ◽  
Siti Normi Zabri ◽  
Shipun Anuar Hamzah

A wide-band metamaterial perfect absorber was introduced. The dual arrow shapes and the ground plane were in between the 0.0035λ TLY-3. Lump element technique was applied to enhance the absorption bandwidth, which was connected between both of the arrow structures. The limitation during fabrication process in using lump element, had seriously restricted its practical applications for microwave absorption. Then, a very thin line was connected between both arrow structures to represent the resistance by lump element which was expected to ease the fabrication process and practical applications as well. Four cases were analyzed: double arrow, double arrow with lump connected, double arrow with lump connected and 9 mm air gap, and thin line connected with 6 mm air gap. The fourth case achieved the highest operational absorbency frequency, which developed about 7.38 GHz (3.87 GHz to 11.25 GHz) approximately to 7.38 GHz. Three resonant frequencies were achieved; 4.17 GHz, 6.09 GHz and 10.30 GHz with perfect absorbency. These properties are expected to be used in practical applications such as satellite and radar communications transmission. These properties of the metamaterial absorber could increase the functionality of the metamaterial absorber to be used in any application especially in reducing radar cross section for stealth application.

2017 ◽  
Vol 31 (36) ◽  
pp. 1750354 ◽  
Author(s):  
Xuying Wang ◽  
Qingmin Wang ◽  
Guoyan Dong ◽  
Yanan Hao ◽  
Ming Lei ◽  
...  

A terahertz metasurface perfect absorber with multi-band performance is demonstrated. The absorber is composed of a ground plane and four split-ring resonators (SRRs) with different dimensions, separated by a dielectric spacer. The numerical simulation results illustrate that the proposed absorber has four distinct absorption peaks at resonance frequencies of 4.24, 5.66, 7.22, and 8.97 THz, with absorption rates of 96.8%, 99.3%, 97.3%, and 99.9%, respectively. Moreover, the corresponding full width at half-maximum (FWHM) values are about 0.27, 0.35, 0.32, and 0.42 THz, respectively, which are much broader than those of previously reported absorbers. Besides, the calculated magnetic field distributions allow us to understand the absorption mechanism in detail. The effects of incident angle and azimuthal angle on the absorber are also investigated. The results show that the proposed absorber is partially sensitive to the incident angle, which makes this design promising for practical applications in terahertz imagers and detectors.


2017 ◽  
Vol 31 (18) ◽  
pp. 1750207 ◽  
Author(s):  
Pibin Bing ◽  
Shichao Huang ◽  
Zhongyang Li ◽  
Zhou Yu ◽  
Ying Lu ◽  
...  

The absorption characteristics of a photoexcited metamaterial absorber at terahertz frequencies were analyzed in this study. Filling photosensitive semiconductor silicon into the gap between the resonator arms leads to modulation of its electromagnetic response through a pump beam which changes conductivity of silicon. Comparisons of terahertz absorbing properties which were caused by different thicknesses and dielectric constants of polyimide, cell sizes and widths of SRRs, and lengths and conductivities of the photosensitive silicon, were studied by using Finite Difference Time Domain (FDTD) from 0.4 THz to 1.6 THz. The results of this study will facilitate the design and preparation of terahertz modulator, filters and absorbers.


2013 ◽  
Vol 873 ◽  
pp. 456-464 ◽  
Author(s):  
Xiao Ming Liu ◽  
Chu Wen Lan ◽  
Qian Zhao ◽  
Ji Zhou

An isotropic Mie resonance-based metamaterial perfect absorber with near unity absorbance is experimentally and numerically demonstrated. The metamaterial is constructed with an array of dielectric cubes and a metallic ground plane. A good agreement between experimental and simulated result at X band absorption is achieved, the absorptivities are 97% and 98% at 9.96 GHz, separately. The absorption peak of the metamaterial perfect absorber is dependent on the permittivity, the size and the array pattern of the dielectric particles. The Mie resonance of dielectric particles provides a novel mechanism for creating the electric and magnetic resonances and offers a simpler route for the isotropic metamaterial perfect absorber with near unity absorbance.


2018 ◽  
Vol 32 (04) ◽  
pp. 1850044 ◽  
Author(s):  
Bui Son Tung ◽  
Bui Xuan Khuyen ◽  
Young Joon Yoo ◽  
Joo Yull Rhee ◽  
Ki Won Kim ◽  
...  

We investigated a reversibly-propagational metamaterial perfect absorber (MPA) for X band using two separated identically-patterned copper layers, which were deposited on continuous dielectric FR-4 layers. By adjusting oblique incidence, two separated resonances are excited, then come close to each other and is finally merged to be a perfect absorption peak at 10.1 GHz. The nature of resonance is the quadrupole mode instead of the fundamental resonances in common MPAs. The mechanism of perfect absorption is the coupling of two quadrupole resonances at their superposition, leading to an enhancement of energy absorption. Finally, we numerically presented the capability of sensing thin resonant substance using the proposed MPA. The characteristic resonance of substance, which does not appear on the absorption spectrum at the limited thickness of bare substance layer, is detected with a great magnitude of signal by exploiting the absorption resonance of MPA. Our work provides another way to obtain the reversibly-propagational absorption by controlling the incident angle instead of the geometrical structure, and might be useful for the potential devices based on MPA such as detectors and sensors.


Nanoscale ◽  
2018 ◽  
Vol 10 (17) ◽  
pp. 8298-8303 ◽  
Author(s):  
Yijia Huang ◽  
Ling Liu ◽  
Mingbo Pu ◽  
Xiong Li ◽  
Xiaoliang Ma ◽  
...  

In this paper, efficient ultra-broadband absorption from ultraviolet (UV) to near infrared (NIR) is achieved using a metamaterial perfect absorber (MPA) with refractory constituents.


2011 ◽  
Vol 28 (6) ◽  
pp. 067808 ◽  
Author(s):  
Chao Gu ◽  
Shao-Bo Qu ◽  
Zhi-Bin Pei ◽  
Hua Ma ◽  
Zhuo Xu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Chen Han ◽  
Renbin Zhong ◽  
Zekun Liang ◽  
Long Yang ◽  
Zheng Fang ◽  
...  

This paper reports an independently tunable graphene-based metamaterial absorber (GMA) designed by etching two cascaded resonators with dissimilar sizes in the unit cell. Two perfect absorption peaks were obtained at 6.94 and 10.68 μm with simple single-layer metal-graphene metamaterials; the peaks show absorption values higher than 99%. The mechanism of absorption was analyzed theoretically. The independent tunability of the metamaterial absorber (MA) was realized by varying the Fermi level of graphene under a set of resonators. Furthermore, multi-band and wide-band absorption were observed by the proposed structure upon increasing the number of resonators and resizing them in the unit cell. The obtained results demonstrate the multipurpose performance of this type of absorber and indicate its potential application in diverse applications, such as solar energy harvesting and thermal absorbing.


Sign in / Sign up

Export Citation Format

Share Document