scholarly journals Single switch Z source/quasi Z source DC-DC converters

Author(s):  
V Saravanan ◽  
M Sabitha ◽  
V Bindu ◽  
Venkatachalam K M ◽  
M Arumugam

<span>This paper analyzes a family of high step up single switch switched capacitor boost converters and Z-source/quasi Z-source dc-dc converters to provide high output dc voltage gain, a proper choice for photovoltaic applications. The operating principles, parameters design guideline of these converters are presented along with simulation results.</span>

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 247 ◽  
Author(s):  
Baocheng Wang ◽  
Wei Tang

In this paper, a novel single-phase transformerless Z-source inverter (ZSI) derived from the basic SEPIC topology, which is named SEPIC-based ZSI, is proposed. The negative end of the input DC voltage of this topology is directly connected to the load and grounded, which can completely eliminate leakage current. Furthermore, this topology has some attractive characteristics such as buck–boost capability, impressive voltage gain, linear voltage gain is realized by a simple control method, and so on. The theoretical design and simulation results are demonstrated by corresponding experiments carried out on a 500 W laboratory prototype controlled by using a DSP TMS320F28335 controller combined with a FPGA SPARTAN-6.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1915
Author(s):  
Hossein Khoun Jahan ◽  
Reyhaneh Eskandari ◽  
Tohid Rahimi ◽  
Rasoul Shalchi Alishah ◽  
Lei Ding ◽  
...  

In this paper, a switched-capacitor multilevel inverter with voltage boosting and common-mode-voltage reduction capabilities is put forth. The proposed inverter is synthesized with one-half bridge and several switched-capacitor cells. Due to the voltage boosting and common-mode current reduction features, the proposed multilevel inverter is suitable for grid-connected PV applications. In addition, an analytical lifetime evaluation based on mission profile of the proposed inverter has been presented to derive lifetime distribution of semiconductors. Whereas in the proposed inverter, any components failure can bring the whole system to a shutdown. The series reliability model is used to estimate the lifetime of the overall system. The performance of the suggested multilevel inverter in grid-connected applications is verified through the simulation results using the grid-tied model in Matlab/Simulink. Moreover, the viability and feasibility of the presented inverter are proven by using a one kW lab-scaled prototype.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4406
Author(s):  
Yaoqiang Wang ◽  
Yisen Yuan ◽  
Gen Li ◽  
Tianjin Chen ◽  
Kewen Wang ◽  
...  

Conventional multilevel inverters have problems in terms of their complicated expansion and large number of devices. This paper proposes a modular expanded multilevel inverter, which can effectively simplify the expansion and reduce the number of devices. The proposed inverter can ensure the voltage balancing of the voltage-dividing capacitors. The cascading of the T-type switched capacitor module and the step-by-step charging method of the switched capacitors enable the inverter to achieve high output voltage levels and voltage gain. In addition, the inversion can be achieved without the H-bridge, which greatly reduces the total standing voltage of the switches. The nine-level inverter of the proposed topology can be realized with only ten switches, obtaining a voltage gain that is two times larger. The above merits were validated through theoretical analysis and experiments. The proposed inverter has good application prospects in medium- and low-voltage photovoltaic power generation.


2017 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
Brwene Salah Gadalla ◽  
Erik Schaltz ◽  
Yam Siwakoti ◽  
Frede Blaabjerg

Boost converters are needed in many applications which require the output voltage to be higher than the input voltage. Recently, boost type converters have been applied for industrial applications, and hence it has become an interesting topic of research. Many researchers proposed different impedance source converters with their unique advantages as having a high voltage gain in a small range of duty cycle ratio. However, the thermal behaviour of the semiconductor devices and passive elements in the impedance source converter is an important issue from a reliability point of view and it has not been investigated yet. Therefore, this paper presents a comparison between the conventional boost, the Z-source, and the Y-source converters based on a thermal evaluation of the semiconductors. In addition, the three topologies are also compared with respect to their efficiency. In this study the results show that the boost converter has higher efficiency than the Zsource and Y-source converter for these specific voltage gain of 2 and 4. The operational principle, mathematical derivations, simulation results and final comparisons are presented in this paper.


2020 ◽  
Author(s):  
Bernardo Andres ◽  
Leonardo Romitti ◽  
Fabrício Hoff Dupont ◽  
Leandro Roggia ◽  
Luciano Schuch

High step-up converters are required and used in photovoltaic applications, due to low voltage of photovoltaic modules. In this paper, an isolated dc-dc high step-up SEPIC with a Greinacher voltage doubler cell is presented. It has the advantage of continuous input current, high efficiency, high voltage gain, isolation and demands a single switch, being suitable for low power grid-tie photovoltaic systems. The operating principles and steady-state analysis are presented, including the detailed analysis of resonant stage, where the value of primary side capacitor is taken into account and plays an important role in the design of the converter, since it directly affects the resonance frequency and RMS current values. Simulation results are presented to validate the analysis and design.


2021 ◽  
Author(s):  
BERNARDO ANDRES ◽  
LEONARDO ROMITTI ◽  
LUCIANO SCHUCH ◽  
LEANDO ROGGIA ◽  
FABRíCIO HOFF DUPONT

High step-up converters are required and used in photovoltaic applications, due to low voltage of photovoltaic modules. In this paper, an isolated dc-dc high step-up SEPIC with a Greinacher voltage quadrupler cell is presented. It has the advantage of continuous input current, high efficiency, high voltage gain, isolation and demands a single switch, being suitable for low power grid-tie photovoltaic systems. The operating principles and steady-state analysis are presented, including the detailed analysis of resonant stage, where the value of primary side capacitor is taken into account and plays an important role in the design of the converter, since it directly affects the resonance frequency and RMS current values. Simulation results are presented to validate the analysis and design.


Author(s):  
Jagabar Sathik Mohamed Ali ◽  
Marif Daula Siddique ◽  
Saad Mekhilef ◽  
Yongheng Yang ◽  
Yam Siwakoti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document