scholarly journals Observer based dynamic control model for bilaterally controlled MU-lapa robot: Surgical tool force limiting

Author(s):  
Branesh M. Pillai ◽  
Chumpon Wilasrusmee ◽  
Jackrit Suthakorn

During laparoscopic surgeries, primary surgical tool insertion is the demanding and strenuous task. As the surgeon is unaware of the type of the tissue and associated parameters to conduct the insertion, therefore, to ease the procedure, the movement of the surgical tool needs to be controlled. It’s the operational capabilities that are to be manipulated to perform a smooth surgery even from a distant location. In this study, a robot system is being introduced for laparoscopic primary surgical tool insertion. It will incorporate a novel observer based dynamic control along with robot assisted bilateral control. Moreover, a virtual spring damper force lock system is introduced through which the slave system will notify the master regarding the target achieved and excessive force. The validation of the proposed control system is experimented with bilaterally controlled MU-LapaRobot. The experiment is comprising 3 cases of bilateral control criteria which are non-contact motion, contact motion, and limit force locking. The results defined the same value for contact and non-contact motion by 0.3N. The results depicted a force error of 3.6% and a position error of 5.8% which validated the proposed algorithm.

2021 ◽  
Author(s):  
Hao Deng ◽  
Hui Li ◽  
Minghui Xu ◽  
Chen Zhang ◽  
Ming Bai

Author(s):  
ShengChao Zhen ◽  
WangXu Cui ◽  
XiaoLi Liu ◽  
GuanJun Meng ◽  
Ye-Hwa Chen

In order to reduce the impact of load and system parameter changes on the dynamic performance of collaborative robot joint module, a novel robust control algorithm is proposed in this paper to solve the problem of dynamic control of collaborative robot joint module trajectory tracking. The controller is composed of two parts: one is a nominal control term designed based on the dynamical model, aiming to stabilize the nominal robot system; the other is a robust control term based on the Lyapunov method, aiming to eliminate the influence of uncertainty on tracking performance, where the uncertainties include nonlinear friction, parameter uncertainty, and external disturbances. The Lyapunov minimax method is adopted to prove that the system is uniformly bounded and uniformly ultimately bounded. We performed numerical simulation and experimental validation based on an actual collaborative robot joint module experimental platform and the rapid controller prototype cSPACE. The numerical simulation and experimental results show that the controller has excellent control performance for the collaborative robot joint module and provides more accurate trajectory tracking under the influence of uncertainties.


2010 ◽  
Vol 4 (4) ◽  
Author(s):  
Xiaoli Zhang ◽  
Carl A. Nelson

The use of robotics to enhance visualization and tissue manipulation capabilities contributes to the advancement of minimally invasive surgery. For the development of surgical robot manipulators, the use of advanced dynamic control is an important aspect at the design stage to determine the driving forces and/or torques, which must be exerted by the actuators in order to produce a desirable trajectory of the end effector. Therefore, this study focuses on the generation of inverse dynamic models for a spherical bevel-geared mechanism called Compact Bevel-geared Robot for Advanced Surgery (CoBRASurge), which is used as a surgical tool manipulator. For given typical trajectories of end effectors in clinical experiments, the motion of each element in the mechanism can be derived using the inverse kinematic equations. The driving torques exerted by actuators can be determined according to the presented inverse dynamic formulations. The simulation results of CoBRASurge reveal the nature of the driving torques in spherical bevel-geared mechanisms. In addition, sensitivity analysis of mass contribution has been performed to evaluate the effect of individual elements on the peak driving torques. Dynamic models, such as the one presented, can be used for the design of advanced dynamic control systems, including gravity compensation and haptic interfaces for enhanced surgical functionality. The accompanying sensitivity analysis also provides a solid guideline for the design of the next generation CoBRASurge prototype. The present dynamic modeling methodology also gives a general dynamic analysis approach for other spherical articulated linkage mechanisms.


2016 ◽  
Author(s):  
Devin R. Berg

Through the use of a cadaveric porcine model, forces necessary for manipulation of the abdominal organs were evaluated using an instrumented probe. Additionally, forces for tissue puncture, knot tightening, and suture breakage have been measured in order to determine the requirements placed upon the design of novel robotic surgical tools. The break forces for a variety of suture sizes and types were evaluated including sizes 3-0 through 7-0 polypropylene, size 1 polybutestor, size 4-0 chromic gut, and size 6-0 braided polyester. Tests of the tissue puncture force and knot tightening forces were carried out using the same instrumented probe, while the suture break forces were measured using a tension testing machine. The measured forces were found to compare well against the literature and provide a good basis from which to design robotic surgical tools with the appropriate capabilities.


Author(s):  
Xiaoli Zhang ◽  
Carl A. Nelson

The use of robotics to enhance visualization and tissue manipulation capabilities is contributing to the advancement of minimally invasive surgery (MIS). For the development of surgical robot manipulators, the use of advanced dynamic control is an important aspect at the design stage to determine the driving forces and/or torques which must be exerted by the actuators in order to produce a desirable trajectory of the end effector. Therefore, this study focuses on the generation of inverse dynamic models for a spherical bevel-geared mechanism called CoBRASurge (Compact Bevel-geared Robot for Advanced Surgery), which is used as a surgical tool manipulator. For given typical trajectories of end effectors in clinical experiments, the motion of each element in the mechanism can be derived using the inverse kinematic equations. The driving torques exerted by actuators can be determined according to the presented inverse dynamic formulations. The simulation results of CoBRASurge reveal the nature of the driving torques in spherical bevel-geared mechanisms. Such models can be used for the design of advanced dynamic control systems, including gravity compensation and haptic interfaces for enhanced surgical functionality. In addition, sensitivity analysis of mass contribution has been performed to evaluate the effect of individual elements on the peak driving torques, which provides a solid guideline for the design of the next-generation CoBRASurge prototype. The present dynamic modeling methodology also presents a general dynamic analysis approach for other spherical articulated linkage mechanisms.


2017 ◽  
Vol 10 (3) ◽  
pp. 267
Author(s):  
Napol Varachitchai ◽  
Chan Anyapo ◽  
Chowarit Mitsantisuk

Robotica ◽  
2001 ◽  
Vol 19 (2) ◽  
pp. 149-161 ◽  
Author(s):  
Miomir Vukobratovic ◽  
Veljko Potkonjak ◽  
Vladimir Matijevic

The paper discusses some practical problems of contact dynamics. Modelling the dynamics of contact tasks is carried out in a completely general way. Two dynamic systems, active robot system and passive environment system are brought into contact and the relevant dynamics are analyzed. The effects are: rigid-body contact force, elastodynamics in contact zone, friction in contact points, etc. Simultaneous stabilization of contact force and position is obtained using New Dynamic Position/Force Control. The general model is then applied to some more concrete problems and the simulation results are presented.


1992 ◽  
Vol 4 (6) ◽  
pp. 526-528 ◽  
Author(s):  
Junji Furusho ◽  
◽  
Akihito Sano ◽  
Yosuke Okajima ◽  

There are many kinds of control methods for quadruped walking robots. In this paper, we deal with a walking control method in which the robot system can utilize the gravity effect very skillfully and the energy can thus be saved. Using computer simulation, we studied the walking control by this method from some aspects, such as the mean walking speed, the variation of the walking speed, and the stability. It is shown that the step width and the bending angle of the knee joints at the touchdown are important factors for walking controls.


1994 ◽  
Vol 11 (7) ◽  
pp. 573-589 ◽  
Author(s):  
Yangsheng Xu ◽  
Heung-Yeung Shum

Sign in / Sign up

Export Citation Format

Share Document