scholarly journals Improvements on the performance of subcarrier multiplexing/wavelength division multiplexing based radio over fiber system

Author(s):  
Duc-Tan Tran ◽  
Ninh Trung Bui

Radio over fiber (RoF) techniques are good candidates to create the backbone of the next generation of wireless networks. Many parameters affect RoF communications such as amplified spontaneous emission noise (ASE), four-wave mixing nonlinearity (FWM), the modulation, channel spacing, switching voltage, and phase shifter. In this paper, we propose an improved model of RoF communication systems using subcarrier multiplexing/wavelength division multiplexing (SCM/WDM) technique with unequal channel spacing and 1-km Erbium-doped fiber amplifier (EDFA). Simulation results confirmed that we could obtain the lowest bit error rate and noises when the EDFA is placed at 1 km from the transmitter by using optical single-sideband (OSSB) modulation at frequencies 193.1 THz, 193.2 THz, 193.35 THz, and 193.6 THz.

Author(s):  
S. Semmalar ◽  
S. Malarkkan

Proposed the EDFA and EYCDFA power booster (Erbium Doped Fiber Amplifier- Erbium ytterbium co doped fiber amplifier) with quad pumping for high speed and multi wavelength services in an optical communication. The proposed EDFA and EYCDFA power booster with WDM(Wavelength division multiplexing) simulated by dual forward and Backward pumping, Dual-backward pumping, Tri-single forward and dual backward pumping and Quadsingle forward and tri-backward pumping with respect to Pump power and fiber Length. The parameters Input Optical power, Output Optical power, Forward Signal power, Backward Signal power measured and determined the speed of transmission in all types of pumping methods. From that the proposed EDFA- ans EYCDFA power booster with WDM quad pumping is the best suitable for secured high speed optical telecommunication systems. The results shown in Quad pumping Output optical power is maximum 25.2dB and optimum spectral forward Signal power is 30.5dBm and very less spectral optical backward signal power of -25.4dBm with Length 5m


2019 ◽  
Vol 40 (4) ◽  
pp. 341-346
Author(s):  
Kulwinder Singh ◽  
Karan Goel ◽  
Kamaljit Singh Bhatia ◽  
Hardeep Singh Ryait

Abstract Different fiber amplifiers such as semiconductor optical amplifier, erbium-doped fiber amplifier and erbium ytterbium-co-doped fiber amplifier (EYCDFA) are investigated for 16×40 GB/s wavelength division multiplexing system. Various performance parameters including Q-factor, bit error rate, jitter, eye opening and eye closure are observed and analyzed. It is reported that EYCDFA is a better choice among the tested amplifiers. The proposed system is also investigated in terms of transmission distance.


2017 ◽  
Vol 38 (1) ◽  
Author(s):  
Hsiu-Sheng Lin ◽  
Po-Chou Lai

AbstractWe propose the experiment transport of 48 Chs 40 Gb/s dense wavelength division multiplexing (DWDM) system that uses larger effective area fiber (LEAF) in combination with reverse dispersion fiber (RDF), which is a dispersion compensation device, in C band (1,530–1,560 nm) and L band (1,570–1,610 nm) wavelength range to solve the dispersion program. The single Mach–Zehnder modulation (MZM) format with erbium-doped fiber amplifier (EDFA) configuration to generate return-to-zero differential phase-shift keying (RZ-DPSK) modulation signal can compensate dispersion impairment in 48×40 Gb/s DWDM system. The proposed 48×40 Gb/s DWDM system successfully employs single MZM RZ-DPSK modulation format to reduce modulation complex configuration with EDFA to promote the power signal and using LEAF and RDF in 28 spans over 3,360 km ultra-long-haul fiber transmission successfully.


Author(s):  
Anurupa Lubana ◽  
Sanmukh Kaur

In this paper, we present a novel erbium–ytterbium doped fiber amplifier (EYDFA) + Raman + EYDFA hybrid optical amplifier (HOA) for a super-dense wavelength division multiplexing (SD-WDM) system application. The performance of the 100-channel system has been investigated for an overall data rate and channel spacing of 100[Formula: see text]Gb/s and 0.4[Formula: see text]nm, respectively, over a wavelength span of 1550–1589.9[Formula: see text]nm. HOA has been optimized for Raman length, EYDFA lengths, pump powers and Er[Formula: see text] concentrations to achieve high average gain and low gain variation ratio of 40.41[Formula: see text]dB and 0.40[Formula: see text]respectively. The optimized configuration of the proposed HOA has been compared with EYDFA + Raman and Raman + EYDFA HOA configurations. The achieved high and flat gain with an acceptable output optical signal to noise ratio (OSNR) in case of EYDFA + Raman + EYDFA HOA; makes it an optimum choice for SD-WDM systems.


2017 ◽  
Vol 38 (2) ◽  
Author(s):  
Garima Arora ◽  
Sanjeev Dewra

AbstractThis paper presents the comparison of various modulation formats for 64×10 Gbps dense wavelength division multiplexing system using Raman–erbium-doped fiber amplifier optical amplifier with 100 GHz interval. We evaluate the suitability of various data formats like return-to-zero (RZ) raised cosine (RC), RZ rectangular (Rect), non-return-to-zero (NRZ) RC and NRZ-Rect for an optical transmission link. The results have been carried out by evaluating the value of quality factor, bit error rate (BER) and average opening of an eye. It is found that using NRZ-Rect data format, the signal can travel up to transmission length of 234 km with acceptable BER (1.10e


2015 ◽  
Vol 36 (2) ◽  
Author(s):  
N. Ahmed ◽  
Hilal A. Fadhil ◽  
S. A. Aljunid ◽  
Md. Sharafat Ali ◽  
Matiur Rahman

AbstractIn this paper, the performance of wavelength division multiplexing-passive optical network (WDM-PON) system using the erbium-doped fiber amplifier (EDFA) is optimized and evaluated. The optimization is analyzed by finding the EDFA length range at which the output power produced are the highest and the pump power range at which the gain flatness produced are within the effective range (0.3 dB). After the optimization process, the optimized EDFA system produces the gain of 26.6±0.292 dB, noise figure of 3.82 dB and output power of 7 dBm and the system is then implemented into WDM system. The performance of WDM system is compared against the system without EDFA in terms of bit error rate (BER). Results obtained prove that the proposed system with the EDFA consistently performs better than the conventional system.


2019 ◽  
Vol 40 (2) ◽  
pp. 101-107 ◽  
Author(s):  
Deepti Ahlawat ◽  
Payal Arora ◽  
Suresh Kumar

Abstract Analysis of wavelength division multiplexing (WDM) system utilizing erbium-doped fiber amplifier (EDFA) has been carried out by many researchers. In this paper, the performance analysis of 8-channel WDM system utilizing EDFA and fiber Bragg grating (FBG) combination is carried out in a wavelength band 1546–1552 nm at 10 Gbps. The performance of three apodization functions (Uniform, Gaussian and Tanh) of FBG is compared using return-to-zero (RZ) and non-return-to-zero modulation formats at fiber lengths 50, 60, 70 and 80 km. Also, the performance of FBG is compared for both aspects: with chirp and without chirp for grating lengths 5–10 mm. The Gaussian apodized and linearly chirped FBG outperformed the other two in compensating chromatic dispersion. Optimum values of Q-factor are also obtained using linearly chirped FBG with RZ modulation format at 10 mm of grating length.


Sign in / Sign up

Export Citation Format

Share Document