scholarly journals Hybrid load balance based on genetic algorithm in cloud environment

Author(s):  
Walaa Saber ◽  
Walid Moussa ◽  
Atef M. Ghuniem ◽  
Rawya Rizk

Load balancing is an efficient mechanism to distribute loads over cloud resources in a way that maximizes resource utilization and minimizes response time. Metaheuristic techniques are powerful techniques for solving the load balancing problems. However, these techniques suffer from efficiency degradation in large scale problems. This paper proposes three main contributions to solve this load balancing problem. First, it proposes a heterogeneous initialized load balancing (HILB) algorithm to perform a good task scheduling process that improves the makespan in the case of homogeneous or heterogeneous resources and provides a direction to reach optimal load deviation. Second, it proposes a hybrid load balance based on genetic algorithm (HLBGA) as a combination of HILB and genetic algorithm (GA). Third, a newly formulated fitness function that minimizes the load deviation is used for GA. The simulation of the proposed algorithm is implemented in the cases of homogeneous and heterogeneous resources in cloud resources. The simulation results show that the proposed hybrid algorithm outperforms other competitor algorithms in terms of makespan, resource utilization, and load deviation.

2017 ◽  
Vol 2017 (2) ◽  
pp. 74-94 ◽  
Author(s):  
Aaron Johnson ◽  
Rob Jansen ◽  
Nicholas Hopper ◽  
Aaron Segal ◽  
Paul Syverson

Abstract We present PeerFlow, a system to securely load balance client traffic in Tor. Security in Tor requires that no adversary handle too much traffic. However, Tor relays are run by volunteers who cannot be trusted to report the relay bandwidths, which Tor clients use for load balancing. We show that existing methods to determine the bandwidths of Tor relays allow an adversary with little bandwidth to attack large amounts of client traffic. These methods include Tor’s current bandwidth-scanning system, TorFlow, and the peer-measurement system EigenSpeed. We present an improved design called PeerFlow that uses a peer-measurement process both to limit an adversary’s ability to increase his measured bandwidth and to improve accuracy. We show our system to be secure, fast, and efficient. We implement PeerFlow in Tor and demonstrate its speed and accuracy in large-scale network simulations.


2020 ◽  
Vol 17 (6) ◽  
pp. 2430-2434
Author(s):  
R. S. Rajput ◽  
Dinesh Goyal ◽  
Rashid Hussain ◽  
Pratham Singh

The cloud computing environment is accomplishing cloud workload by distributing between several nodes or shift to the higher resource so that no computing resource will be overloaded. However, several techniques are used for the management of computing workload in the cloud environment, but still, it is an exciting domain of investigation and research. Control of the workload and scaling of cloud resources are some essential aspects of the cloud computing environment. A well-organized load balancing plan ensures adequate resource utilization. The auto-scaling is a technique to include or terminate additional computing resources based on the scaling policies without involving humans efforts. In the present paper, we developed a method for optimal use of cloud resources by the implementation of a modified auto-scaling feature. We also incorporated an auto-scaling controller for the optimal use of cloud resources.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Ali Norouzi ◽  
A. Halim Zaim

There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1297
Author(s):  
Md. Shabiul Islam ◽  
Most Tahamina Khatoon ◽  
Kazy Noor-e-Alam Siddiquee ◽  
Wong Hin Yong ◽  
Mohammad Nurul Huda

Problem solving and modelling in traditional substitution methods at large scale for systems using sets of simultaneous equations is time consuming. For such large scale global-optimization problem, Simulated Annealing (SA) algorithm and Genetic Algorithm (GA) as meta-heuristics for random search technique perform faster. Therefore, this study applies the SA to solve the problem of linear equations and evaluates its performances against Genetic Algorithms (GAs), a population-based search meta-heuristic, which are widely used in Travelling Salesman problems (TSP), Noise reduction and many more. This paper presents comparison between performances of the SA and GA for solving real time scientific problems. The significance of this paper is to solve the certain real time systems with a set of simultaneous linear equations containing different unknown variable samples those were simulated in Matlab using two algorithms-SA and GA. In all of the experiments, the generated random initial solution sets and the random population of solution sets were used in the SA and GA respectively. The comparison and performances of the SA and GA were evaluated for the optimization to take place for providing sets of solutions on certain systems. The SA algorithm is superior to GA on the basis of experimentation done on the sets of simultaneous equations, with a lower fitness function evaluation count in MATLAB simulation. Since, complex non-linear systems of equations have not been the primary focus of this research, in future, performances of SA and GA using such equations will be addressed. Even though GA maintained a relatively lower number of average generations than SA, SA still managed to outperform GA with a reasonably lower fitness function evaluation count. Although SA sometimes converges slowly, still it is efficient for solving problems of simultaneous equations in this case. In terms of computational complexity, SA was far more superior to GAs.


Author(s):  
Ramadevi Chappala Et. al.

By providing intelligent capabilities to objects the physical objects communicate each other without human intervention in Internet of Things (IoT) environment. And these devices generate enormous traffic as the sum of IoT gadgets is increased. As the network traffic is irregular it is most important to obtain an optimal load balance among all the nodes. In this paper, we propose to develop a cache based multipath load balancing protocol for IoT sensor networks. In this protocol multiple paths are established between each IoT sender and the server such that each sender has multiple next-hop delivering IoT data. Whenever, the load of the server becomes greater than a threshold, the server transmits the overloaded high priority data to these cache points and the IoT clients can fetch the data from the nearby CPs rather than the server. The outcome of simulation had proved that CBMLB mechanism attains maximum ratio of packet delivery with reduced overhead and delay.


2020 ◽  
Vol 20 (04) ◽  
pp. 2150002
Author(s):  
MANEL MAJDOUB ◽  
ALI EL KAMEL ◽  
HABIB YOUSSEF

Software Defined Networking (SDN) is a promising paradigm in the field of network technology. This paradigm suggests the separation between the control plane and the data plane which brings flexibility, efficiency and programmability to network resources. SDN deployment in large scale networks raises many issues which can be overcame using a collaborative multi-controller approaches. Such approaches can resolve problems of routing optimization and network scalability. In large scale networks, such as SD-WAN, routing optimization consists of achieving a trade-off between per-flow QoS, the load balancing in each domain as well as the resource utilization in inter-domain links. Multi-Agent Reinforcement Learning paradigm(MARL) is one of the most popular solutions that can be used to optimize routing strategies in SD-WAN. This paper proposes an efficient approach based on MARL which is able to ensure a load balancing among each network as well as optimized resource utilization of inter-domain links. This approach profits from our previous work, denoted SPFLR, and tries to balance the load of the whole network using Deep Q-Networks (DQN) algorithms. Simulation results show that the proposed solution performs better than parallel solutions such as BGP-based routing and random routing.


Author(s):  
You-Fu Yu ◽  
Po-Jung Huang ◽  
Kuan-Chou Lai

P2P Grids could solve large-scale scientific problems by using geographically distributed heterogeneous resources. However, a number of major technical obstacles must be overcome before this potential can be realized. One critical problem to improve the effective utilization of P2P Grids is the efficient load balancing. This chapter addresses the above-mentioned problem by using a distributed load balancing policy. In this chapter, we propose a P2P communication mechanism, which is built to deliver varied information across heterogeneous Grid systems. Basing on this P2P communication mechanism, we develop a load balancing policy for improving the utilization of distributed computing resources. We also develop a P2P resource monitoring system to capture the dynamic resource information for the decision making of load balancing. Moreover, experimental results show that the proposed load balancing policy indeed improves the utilization and achieves effective load balancing.


Author(s):  
Deepika Saxena ◽  
Ashutosh Kumar Singh

Background: Load balancing of communication-intensive applications, allowing efficient resource utilization and minimization of power consumption is a challenging multi-objective virtual machine (VM) placement problem. The communication among inter-dependent VMs, raises network traffic, hampers cloud client's experience and degrades overall performance, by saturating the network. Introduction: Cloud computing has become an indispensable part of Information Technology (IT), which supports the backbone of digitization throughout the world. It provides shared pool of IT resources, which are: always on, accessible from anywhere, at anytime and delivered on demand, as a service. The scalability and pay-per-use benefits of cloud computing has driven the entire world towards on-demand IT services that facilitates increased usage of virtualized resources. The rapid growth in the demands of cloud resources has amplified the network traffic in and out of the datacenter. Cisco Global Cloud Index predicts that by the year 2021, the network traffic among the devices within the datacenter will grow at Compound Annual Growth Rate (CAGR) of 23.4% Methods: To address these issues, a communication cost aware and resource efficient load balancing (CARE-LB) framework is presented, that minimizes communication cost, power consumption and maximize resource utilization. To reduce the communication cost, VMs with high affinity and inter-dependency are intentionally placed closer to each other. The VM placement is carried out by applying the proposed integration of Particle Swarm Optimization and non-dominated sorting based Genetic Algorithm i.e. PSOGA algorithm encoding VM allocation as particles as well as chromosomes. Results: The performance of proposed framework is evaluated by the execution of numerous experiments in the simulated datacenter environment and it is compared with the state-of-the-art methods like, Genetic Algorithm, First-Fit, Random-Fit and Best-Fit heuristic algorithms. The experimental outcome reveals that the CARE-LB framework improves 11% resource utilization, minimize 4.4% power consumption, 20.3% communication cost with reduction of execution time up to 49.7% over Genetic Algorithm based Load Balancing framework. Conclusion: The proposed CARE-LB framework provides promising solution for faster execution of data-intensive applications with improved resource utilization and reduced power consumption. Discussion: In the observed simulation, we analyze all the three objectives, after execution of the proposed multi-objective VM allocations and results are shown in Table 4. To choose the number of users for analysis of communication cost, the experiments are conducted with different number of users. For instance, for 100 VMs we choose 10, 20,...,80 users, and their request for VMs (number of VMs and type of VMs) are generated randomly, such that the total number of requested VMs do not exceed number of available VMs.


2011 ◽  
Vol 305 ◽  
pp. 389-393
Author(s):  
Min Shuo Li ◽  
Hua Wen Liu

Anycast routing can raise the QoS of networks and offers load-balance, it is the leading issue in the domain of computer, electric and communication. With the study of the anycast routing algorithm based on genetic algorithm, we put forth an improved anycast routing algorithm in the thesis. Through a lot simulation experiment on simulating platform, we compare and evaluate the performance discrepancy of the improved algorithm and the old one. The improved anycast-routing algorithm befits large-scale network, can satisfy the demand of the development of the net, It has more competent application merit.


Sign in / Sign up

Export Citation Format

Share Document