scholarly journals Numerical approach of riemann-liouville fractional derivative operator

Author(s):  
Ramzi B. Albadarneh ◽  
Iqbal M. Batiha ◽  
Ahmad Adwai ◽  
Nedal Tahat ◽  
A. K. Alomari

<p>This article introduces some new straightforward and yet powerful formulas in the form of series solutions together with their residual errors for approximating the Riemann-Liouville fractional derivative operator. These formulas are derived by utilizing some of forthright computations, and by utilizing the so-called weighted mean value theorem (WMVT). Undoubtedly, such formulas will be extremely useful in establishing new approaches for several solutions of both linear and nonlinear fractionalorder differential equations. This assertion is confirmed by addressing several linear and nonlinear problems that illustrate the effectiveness and the practicability of the gained findings.</p>

2021 ◽  
Vol 6 (11) ◽  
pp. 12743-12756
Author(s):  
Ramzi B. Albadarneh ◽  
◽  
Iqbal Batiha ◽  
A. K. Alomari ◽  
Nedal Tahat ◽  
...  

<abstract><p>This work aims to propose a new simple robust power series formula with its truncation error to approximate the Caputo fractional-order operator $ D_{a}^{\alpha}y(t) $ of order $ m-1 &lt; \alpha &lt; m $, where $ m\in\mathbb{N} $. The proposed formula, which are derived with the help of the weighted mean value theorem, is expressed ultimately in terms of a fractional-order series and its reminder term. This formula is used successfully to provide approximate solutions of linear and nonlinear fractional-order differential equations in the form of series solution. It can be used to determine the analytic solutions of such equations in some cases. Some illustrative numerical examples, including some linear and nonlinear problems, are provided to validate the established formula.</p></abstract>


2021 ◽  
Vol 45 (5) ◽  
pp. 797-813
Author(s):  
SAJID IQBAL ◽  
◽  
GHULAM FARID ◽  
JOSIP PEČARIĆ ◽  
ARTION KASHURI

In this paper we present variety of Hardy-type inequalities and their refinements for an extension of Riemann-Liouville fractional derivative operators. Moreover, we use an extension of extended Riemann-Liouville fractional derivative and modified extension of Riemann-Liouville fractional derivative using convex and monotone convex functions. Furthermore, mean value theorems and n-exponential convexity of the related functionals is discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Ahmed Kajouni ◽  
Ahmed Chafiki ◽  
Khalid Hilal ◽  
Mohamed Oukessou

This paper is motivated by some papers treating the fractional derivatives. We introduce a new definition of fractional derivative which obeys classical properties including linearity, product rule, quotient rule, power rule, chain rule, Rolle’s theorem, and the mean value theorem. The definition D α f t = lim h ⟶ 0 f t + h e α − 1 t − f t / h , for all t > 0 , and α ∈ 0,1 . If α = 0 , this definition coincides to the classical definition of the first order of the function f .


Filomat ◽  
2018 ◽  
Vol 32 (18) ◽  
pp. 6177-6187 ◽  
Author(s):  
Mourad Chamekh ◽  
Abdeljabbar Ghanmi ◽  
Samah Horrigue

In this paper, an iterative method is applied to solve some p-Laplacian boundary value problem involving Riemann-Liouville fractional derivative operator. More precisely, we establish the existence of two positive solutions. Moreover, we prove that these solutions are one maximal and the other is minimal. An example is presented to illustrate our main result. Finally, a numerical method to solve this problem is given.


2021 ◽  
Vol 24 (4) ◽  
pp. 1220-1230
Author(s):  
Mohammed Al-Refai

Abstract In this paper, we formulate and prove two maximum principles to nonlinear fractional differential equations. We consider a fractional derivative operator with Mittag-Leffler function of two parameters in the kernel. These maximum principles are used to establish a pre-norm estimate of solutions, and to derive certain uniqueness and positivity results to related linear and nonlinear fractional initial value problems.


2020 ◽  
Vol 14 (9) ◽  
pp. 423-432
Author(s):  
Paolo De Angelis ◽  
Roberto De Marchis ◽  
Antonio Luciano Martire ◽  
Stefano Patri

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Sara Salem Alzaid ◽  
Badr Saad T. Alkahtani ◽  
Shivani Sharma ◽  
Ravi Shanker Dubey

In this paper, we have extended the model of HIV-1 infection to the fractional mathematical model using Caputo-Fabrizio and Atangana-Baleanu fractional derivative operators. A detailed proof for the existence and the uniqueness of the solution of fractional mathematical model of HIV-1 infection in Atangana-Baleanu sense is presented. Numerical approach is used to find and study the behavior of the solution of the stated model using different derivative operators, and the graphical comparison between the solutions obtained for the Caputo-Fabrizio and the Atangana-Baleanu operator is presented to see which fractional derivative operator is more efficient.


Sign in / Sign up

Export Citation Format

Share Document