Portable Electrochemical Sensing System Attached to Smartphones and Its Incorporation with Paper-based Electrochemical Glucose Sensor

Author(s):  
Takuya Fujimoto ◽  
Shogo Kawahara ◽  
Yukio Fuchigami ◽  
Shoji Shimokawa ◽  
Yosuke Nakamura ◽  
...  

This paper described the development of a small and low cost biosensor consisting of a smartphone-based electrochemical biosensor device and a paper-based biosensor. The device harvested power from the smartphone and transferred data through audio jack. We designed CMOS circuits including a power supply circuit, a potentiostat, and a ΔΣ modulator. The fabrication of a paper-based biosensor was simple: the three electrodes were directly drawn on chromatography paper using a carbon pencil. The paper-based biosensor was low cost, disposable, portable and friendly to the environment. The sensing system was designed to perform the chronoamperometry measurement, and the glucose concentration in a liquid specimen was detected. Results showed that the sensing system was capable of measuring the glucose concentration as precisely as expensive equipments.

Author(s):  
Zhengwang Xu ◽  
Wei Mei ◽  
Jiaqi Yu ◽  
Jiarui Zhang ◽  
Yuchun Yi ◽  
...  

As being restricted by factors such as cost, efficiency and size, the development of high-power solar LED street light controller is faced with plenty of difficulties. In case that a structure of two independent DC/DC is applied as the main circuit, it has to face problems such as large size and high cost; in case of applying the bidirectional BUCK/BOOST circuit, it requires change-over switches to control the solar panel and LED light. As being restricted by withstanding voltage, on-resistance and cost, a PMOS device cannot be used as the change-over switch of solar panel and LED light. However, when being used as a change-over switch, an NMOS device must apply the low-side mode under which the negative ends of the mentioned three parts are cut off. In the condition of applying the low-side mode, a differential circuit must be used to detect the voltage of the solar panel. Furthermore, in order to make sure batteries can still be regularly charged after wearing out in daylight, the controller must be supplied with power through a dual power supply circuit that can obtain power from both the solar panel and the battery. The demander has a requirement on extremely low standby power consumption of the product, and thus it is necessary to minimize the circuit that is live while working in standby mode. Methods: The bidirectional BUCK/BOOST circuit structure is applied to the main circuit to realize a higher change-over efficiency while giving considerations to both cost and size. The NMOS device, model IRFB4410ZPBF, with a price of about three yuan, is used as the switching device, and the low-side mode is applied, that is the switches inserted in between negative end of the solar panel or LED light and that of the DC/DC circuit. The low-cost rail-to-rail operational amplifier LM358 is used to form a differential amplification circuit for detecting the voltage of the solar panel. A XL1509-12E1 chip that only costs 0.88 yuan/pc is selected as the main change-over chip for the power supply, which has realized the highly-efficient and low-cost change-over of the power supply. A dual power supply circuit and a step-down protective circuit are designed for the XL1509-12E1 change-over chip. By comparing solar panel voltage with battery voltage, the solar panel booting circuit is realized. Only when solar panel voltage is higher than battery voltage, does the system program start to power it up for running, so that the outage of most of the circuits of the system under standby mode does not consume energy. Furthermore, the solar panel voltage detecting circuit, the solar panel booting circuit and several return difference functions are corrected during system debugging. Results: The circuit board of the entire controller features small size, low cost and high efficiency. It measures about 100*62*18mm in size, costs about 60 yuan, and the charge/discharge change-over efficiency reaches up to over 95%. The controller has many functions: it is capable of operating within a large scope, in which, solar panel voltage is subject to 15~50V, LED light voltage is subject to 15~60V, battery voltage is subject to 10~35V and battery-end charge/discharge current is 10A; it is capable of adapting to monocrystalline silicon/multicrystalline silicon/thin-film and many other kinds of solar panels, as well as lithium/lead-acid and many other kinds of batteries; it is capable of detecting the conversion of day and night, automatically controlling charging and discharging and automatically making adaptive adjustment according to seasonal variations; the current to be consumed during standby will be maintained below 3mA, and thus the power consumption is extremely low. Conclusion: By selecting the bidirectional BUCK/BOOST circuit structure, applying low-side mode for switching of solar panel and LED light, using a differential circuit to detect solar panel voltage, using a low-cost DC/DC chip to realize power supply change-over, designing a dual power supply circuit, introducing solar panel booting circuit and other hardware design, as well as MPPT algorithm, state recognition and control, return difference control and other software design, a solar LED street light control product featuring small size, low cost, high efficiency and multiple functions is successfully developed.


Author(s):  
Ava Hedayatipour ◽  
Shahram Hatefi Hesari ◽  
Shaghayegh Aslanzadeh ◽  
Varsha Mohan ◽  
Rania Oueslati ◽  
...  

2015 ◽  
Vol 643 ◽  
pp. 69-77 ◽  
Author(s):  
Shunsuke Tanaka ◽  
Tatsunori Nagashima ◽  
Yasunori Kobori ◽  
Kotaro Kaneya ◽  
Takahiro Sakai ◽  
...  

This Paper Describes Application of the Hysteresis Control to the Single-Inductordual-Output (SIDO) Power Supply Circuit to Realize High Performance, Low Cost and Small Sizepower Supply Circuits. the Sidos can Realize Small Number of Inductors (hence Small Size Andlow Cost) in the System where Multiple Power Supplies are Required, but their Performance Isnot Very Good if Conventional SIDO Control Methods are Used. we Show with Simulation Andexperiment that the Hysteresis Control can Realize High Performance SIDO Converters.


2013 ◽  
Vol 416-417 ◽  
pp. 980-984 ◽  
Author(s):  
Li Yan Zhao

We have developed a novel planar interdigital sensing system: using a microcontroller and local fabricated circuits with dual supply and signal processing for data acquisition. The first prototype is called seafood inspection tool or SIT consist of a SiLab C8051F020 microcontroller, a signal processing circuit, novel planar interdigital sensor, an expansion board and dual power supply circuit. A user friendly software was also developed to make SIT easy to be used by users who has a little technical knowledge. SIT was developed to be tested by the fisherman who can do a pre-screening process of the mussels at their ranch site.Our main objective is to sense the presence of dangerous contaminated acid in mussels and other seafoods.


IIUC Studies ◽  
2012 ◽  
Vol 7 ◽  
pp. 107-116 ◽  
Author(s):  
ASM Bakibillah ◽  
Muhammad Athar Uddin ◽  
Shah Ahsanul Haque

Electrical and mechanical machineries are used in industrial and domestic applications. Measurement of speed of revolving machineries is necessary for their proper functioning and controlling. Tachometer is an instrument which is used to measure the speed of revolving shaft, gear and pulley. This paper describes the basic construction of a low cost optical tachometer and analyzes its performance. The basic tachometer circuit consists of two stages. In the first stage monostable wired around IC NE555 is used, and in the second stage a digital counter based 4-digit counter IC 74C926 is used for the construction of the tachometer. A 5V regulated power supply circuit and an infrared light source circuit are also used. The instrument can measure speed upto 9999 RPM. This speed measurement instrument performs well in terms of accuracy, and can be very useful due to its simplicity and low cost. DOI: http://dx.doi.org/10.3329/iiucs.v7i0.12263 IIUC Studies Vol.7 2011: 107-116


Author(s):  
Xiaoyun Yang ◽  
Ruel Overfelt ◽  
Alice Zitova ◽  
Aleksandr Simonian ◽  
Jeffrey Kirsch ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4607
Author(s):  
Dounia Elfadil ◽  
Abderrahman Lamaoui ◽  
Flavio Della Pelle ◽  
Aziz Amine ◽  
Dario Compagnone

Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.


Sign in / Sign up

Export Citation Format

Share Document