scholarly journals Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4607
Author(s):  
Dounia Elfadil ◽  
Abderrahman Lamaoui ◽  
Flavio Della Pelle ◽  
Aziz Amine ◽  
Dario Compagnone

Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.

2019 ◽  
Vol 15 (3) ◽  
pp. 219-239 ◽  
Author(s):  
Abd-Egawad Radi ◽  
Tarek Wahdan ◽  
Amir El-Basiony

<P>Background: The electrochemical sensing of drugs in pharmaceutical formulations and biological matrices using molecular-imprinting polymer (MIP) as a recognition element combined with different electrochemical signal transduction has been widely developed. The MIP electrochemical sensors based on nanomaterials such as graphene, carbon nanotubes, nanoparticles, as well as other electrode modifiers incorporated into the MIPs to enhance the performance of the sensor, have been discussed. The recent advances in enantioselective sensing using MIP-based electrochemical sensors have been described. </P><P> Methods: The molecular imprinting has more than six decades of history. MIPs were introduced in electrochemistry only in the 1990s by Mosbach and coworkers. This review covers recent literature published a few years ago. The future outlook for sensing, miniaturization and development of portable devices for multi-analyte detection of the target analytes was also given. </P><P> Results: The growing pharmaceutical interest in molecularly imprinted polymers is probably a direct consequence of its major advantages over other analytical techniques, namely, increased selectivity and sensitivity of the method. Due to the complexity of biological samples and the trace levels of drugs in biological samples, molecularly imprinted polymers have been used to improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. The emergence of nanomaterials opened a new horizon in designing integrated electrochemical systems. The success of obtaining a high-performance electrochemical sensor based on MIPs lies in the kind of material that builds up the detection platform. </P><P> Conclusion: The novel approaches to produce MIP materials, combined with electrochemical transduction to develop sensors for screening different pharmaceutically active compounds have been overviewed. MIPs may appear indispensable for sensing in harsh conditions, or sensing that requires longterm stability unachievable by biological receptors. The electrochemical sensors provide several benefits including low costs, shortening analysis time, simple design; portability; miniaturization, easy-touse, can be tailored using a simple procedure for particular applications. The performance of sensor can be improved by incorporating some conductive nanomaterials as AuNPs, CNTs, graphene, nanowires and magnetic nanoparticles in the polymeric matrix of MIP-based sensors. The application of new electrochemical sensing scaffolds based on novel multifunctional-MIPs is expected to be widely developed and used in the future.</P>


BioTechniques ◽  
2020 ◽  
Vol 69 (6) ◽  
pp. 406-419
Author(s):  
Zahra El-Schich ◽  
Yuecheng Zhang ◽  
Marek Feith ◽  
Sarah Beyer ◽  
Louise Sternbæk ◽  
...  

Molecularly imprinted polymers (MIPs) are currently widely used and further developed for biological applications. The MIP synthesis procedure is a key process, and a wide variety of protocols exist. The templates that are used for imprinting vary from the smallest glycosylated glycan structures or even amino acids to whole proteins or bacteria. The low cost, quick preparation, stability and reproducibility have been highlighted as advantages of MIPs. The biological applications utilizing MIPs discussed here include enzyme-linked assays, sensors, in vivo applications, drug delivery, cancer diagnostics and more. Indeed, there are numerous examples of how MIPs can be used as recognition elements similar to natural antibodies.


2012 ◽  
Vol 535-537 ◽  
pp. 1525-1528 ◽  
Author(s):  
Jian Qi ◽  
Li Guo ◽  
Hai Feng Sang

Molecular imprinting is a technique to prepare polymers with predetermined selectivity, specific recognition and predesigned affinity to a desired molecule. The stability and low cost of molecularly imprinted polymers (MIPs) render them attractive for a broad range of applications. Currently, MIP technique has been widely used in chiral separation. In this study, a series of molecularly imprinted polymers for N-Carbobenzoxy-L-tryptophan (N-Cbz-L-Trp) synthesized in different conditions were prepared in a small scale to simulate the monolithic chiral stationary phases (CSPs) primarily. By coupling in situ processing and batch rebinding evaluation, the type of functional monomers, which likely to affect the chiral selectivity of MIPs, was investigated. It was found that a MIP comprising a mixture of functional monomer 4-vinylpyridine (4-VP) and porogen 1-dodecanol/toluene exhibited the highest binding capacity and chiral selectivity for N-Carbobenzoxy-L-tryptophan. Thereafter, the monolithic MIP synthesized in screened optimum condition is used as chiral stationary phase in HPLC, which shows favourable separating capacity.


Author(s):  
DIANE FAUZI ◽  
FEBRINA AMELIA SAPUTRI

Molecularly Imprinted Polymers (MIPs) is a polymer that binds together to form a specific binding site that is selective for certain analytes. Its high stability, its synthesize simplicity, and it can ease costs significantly make it was applied widely as a receptor instead of antibodies or enzymes. MIPs can be re-developed into MIPs nanoparticles (MIP-NPs) which have greater potential. MIPs use in electrochemical sensors have relevant applications in daily life and have been tested in human samples. Electrochemical sensors have been successfully functioned with MIP-NPs leading to real-time monitoring of drugs, pesticides, environmental contaminants, and secondary metabolites, as well as molecules with biological relevance. The aim of this review is to summarize the developments and applications of MIP-NPs as a selective recognition component in electrochemical sensors with special emphasis on their analytical applications.


2017 ◽  
Vol 41 (18) ◽  
pp. 9977-9983 ◽  
Author(s):  
Huijun Guo ◽  
Rijun Gui ◽  
Hui Jin ◽  
Zonghua Wang

This article reported reduced graphene oxide–carbon dot embedded molecularly imprinted polymers for sensitive and selective electrochemical sensing of rutoside.


Sign in / Sign up

Export Citation Format

Share Document