scholarly journals Low Complexity Angular-Domain Detection for the Uplink of Multi-User mmWave Massive MIMO Systems

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 795
Author(s):  
Xiaoxuan Xia ◽  
Wence Zhang ◽  
Yinkai Fu ◽  
Xu Bao ◽  
Jing Xia

To compromise between the system performance and hardware cost, millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems have been regarded as an enabling technology for the fifth generation of mobile communication systems (5G). This paper considers a low-complexity angular-domain compressing based detection (ACD) for uplink multi-user mmWave massive MIMO systems, which involves hybrid analog and digital processing. In analog processing, we perform angular-domain compression on the received signal by exploiting the sparsity of the mmWave channel to reduce the dimension of the signal space. In digital processing, the proposed ACD scheme works well with zero forcing (ZF)/maximum ratio combining (MRC)/minimum mean square error (MMSE) detection schemes. The performance analysis of the proposed ACD scheme is provided in terms of achievable rates, energy efficiency and computational complexity. Simulations are carried out and it shows that compared with existing works, the proposed ACD scheme not only reduces the computational complexity by more than 50 % , but also improves the system’s achievable rates and energy efficiency.

Information ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 165 ◽  
Author(s):  
Xiaoqing Zhao ◽  
Zhengquan Li ◽  
Song Xing ◽  
Yang Liu ◽  
Qiong Wu ◽  
...  

Massive multiple-input-multiple-output (MIMO) is one of the key technologies in the fifth generation (5G) cellular communication systems. For uplink massive MIMO systems, the typical linear detection such as minimum mean square error (MMSE) presents a near-optimal performance. Due to the required direct matrix inverse, however, the MMSE detection algorithm becomes computationally very expensive, especially when the number of users is large. For achieving the high detection accuracy as well as reducing the computational complexity in massive MIMO systems, we propose an improved Jacobi iterative algorithm by accelerating the convergence rate in the signal detection process.Specifically, the steepest descent (SD) method is utilized to achieve an efficient searching direction. Then, the whole-correction method is applied to update the iterative process. As the result, the fast convergence and the low computationally complexity of the proposed Jacobi-based algorithm are obtained and proved. Simulation results also demonstrate that the proposed algorithm performs better than the conventional algorithms in terms of the bit error rate (BER) and achieves a near-optimal detection accuracy as the typical MMSE detector, but utilizing a small number of iterations.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Van-Khoi Dinh ◽  
Minh-Tuan Le ◽  
Vu-Duc Ngo ◽  
Chi-Hieu Ta

In this paper, a low-complexity linear precoding algorithm based on the principal component analysis technique in combination with the conventional linear precoders, called Principal Component Analysis Linear Precoder (PCA-LP), is proposed for massive MIMO systems. The proposed precoder consists of two components: the first one minimizes the interferences among neighboring users and the second one improves the system performance by utilizing the Principal Component Analysis (PCA) technique. Numerical and simulation results show that the proposed precoder has remarkably lower computational complexity than its low-complexity lattice reduction-aided regularized block diagonalization using zero forcing precoding (LC-RBD-LR-ZF) and lower computational complexity than the PCA-aided Minimum Mean Square Error combination with Block Diagonalization (PCA-MMSE-BD) counterparts while its bit error rate (BER) performance is comparable to those of the LC-RBD-LR-ZF and PCA-MMSE-BD ones.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 927 ◽  
Author(s):  
Alemaishat ◽  
Saraereh ◽  
Khan ◽  
Affes ◽  
Li ◽  
...  

Aiming at the problem of high computational complexity due to a large number of antennas deployed in mmWave massive multiple-input multiple-output (MIMO) communication systems, this paper proposes an efficient algorithm for optimizing beam control vectors with low computational complexity based on codebooks for millimeter-wave massive MIMO systems with split sub-arrays hybrid beamforming architecture. A bidirectional method is adopted on the beam control vector of each antenna sub-array both at the transmitter and receiver, which utilizes the idea of interference alignment (IA) and alternating optimization. The simulation results show that the proposed algorithm has low computational complexity, fast convergence, and improved spectral efficiency as compared with the state-of-the-art algorithms.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 218 ◽  
Author(s):  
Kifayatullah Bangash ◽  
Imran Khan ◽  
Jaime Lloret ◽  
Antonio Leon

Traditional Minimum Mean Square Error (MMSE) detection is widely used in wireless communications, however, it introduces matrix inversion and has a higher computational complexity. For massive Multiple-input Multiple-output (MIMO) systems, this detection complexity is very high due to its huge channel matrix dimension. Therefore, low-complexity detection technology has become a hot topic in the industry. Aiming at the problem of high computational complexity of the massive MIMO channel estimation, this paper presents a low-complexity algorithm for efficient channel estimation. The proposed algorithm is based on joint Singular Value Decomposition (SVD) and Iterative Least Square with Projection (SVD-ILSP) which overcomes the drawback of finite sample data assumption of the covariance matrix in the existing SVD-based semi-blind channel estimation scheme. Simulation results show that the proposed scheme can effectively reduce the deviation, improve the channel estimation accuracy, mitigate the impact of pilot contamination and obtain accurate CSI with low overhead and computational complexity.


Author(s):  
Samson Hansen Sackey ◽  
Michael Kwame Ansong ◽  
Samuel Nartey Kofie ◽  
Abdul Karim Armahy

The term Massive MIMO means, Massive multiple input multiple output also known as (large-scale antenna system, very large MIMO). Massive Multiple-Input-MultipleOutput (MIMO) is the major key technique for the future Fifth Generation (5G) of mobile wireless communication network due to its characteristics, elements and advantages. Massive MIMO will be comprised of five major elements; antennas, electronic components, network architectures, protocols and signal processing. We realize that precoding technique is a processing technique that utilizes Channel State Information Technique (CSIT) by operating on the signals before transmitting them. This technique varies base on the type of CSIT and performance criterion. Precoding technique is the last digital processing block at the transmitting side. In this paper, linear and non-linear Precoding technique was reviewed and we proposed two techniques under each that is Minimum Mean Square Error (MMSE), Block Diagonalization (BD), Tomlinson-Harashima (TH) and Dirty paper coding (DPC). Four Precoding techniques: MMSE, BD, DPC and TH were used in the studies to power consumption, energy efficiency and area throughput for single-cell and multi-cell scenarios. In comparing the proposed techniques, in terms of energy efficiency and area throughput, reuse factor (Reuse 4) performs better than other techniques when there is an imperfect CSI is used


Author(s):  
Rong Ran ◽  
Hayoung Oh

AbstractSparse-aware (SA) detectors have attracted a lot attention due to its significant performance and low-complexity, in particular for large-scale multiple-input multiple-output (MIMO) systems. Similar to the conventional multiuser detectors, the nonlinear or compressive sensing based SA detectors provide the better performance but are not appropriate for the overdetermined multiuser MIMO systems in sense of power and time consumption. The linear SA detector provides a more elegant tradeoff between performance and complexity compared to the nonlinear ones. However, the major limitation of the linear SA detector is that, as the zero-forcing or minimum mean square error detector, it was derived by relaxing the finite-alphabet constraints, and therefore its performance is still sub-optimal. In this paper, we propose a novel SA detector, named single-dimensional search-based SA (SDSB-SA) detector, for overdetermined uplink MIMO systems. The proposed SDSB-SA detector adheres to the finite-alphabet constraints so that it outperforms the conventional linear SA detector, in particular, in high SNR regime. Meanwhile, the proposed detector follows a single-dimensional search manner, so it has a very low computational complexity which is feasible for light-ware Internet of Thing devices for ultra-reliable low-latency communication. Numerical results show that the the proposed SDSB-SA detector provides a relatively better tradeoff between the performance and complexity compared with several existing detectors.


Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


Author(s):  
Adeeb Salh ◽  
Lukman Audah ◽  
Nor Shahida M. Shah ◽  
Shipun A. Hamzah

<span>Massive multi-input–multi-output (MIMO) systems are crucial to maximizing energy efficiency (EE) and battery-saving technology. Achieving EE without sacrificing the quality of service (QoS) is increasingly important for mobile devices. We first derive the data rate through zero forcing (ZF) and three linear precodings: maximum ratio transmission (MRT), zero forcing (ZF), and minimum mean square error (MMSE). Performance EE can be achieved when all available antennas are used and when taking account of the consumption circuit power ignored because of high transmit power. The aim of this work is to demonstrate how to obtain maximum EE while minimizing power consumed, which achieves a high data rate by deriving the optimal number of antennas in the downlink massive MIMO system. This system includes not only the transmitted power but also the fundamental operation circuit power at the transmitter signal. Maximized EE depends on the optimal number of antennas and determines the number of active users that should be scheduled in each cell. We conclude that the linear precoding technique MMSE achieves the maximum EE more than ZF and MRT</span><em></em><span>because the MMSE is able to make the massive MIMO system less sensitive to SNR at an increased number of antennas</span><span>.</span>


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 980 ◽  
Author(s):  
Hui Feng ◽  
Xiaoqing Zhao ◽  
Zhengquan Li ◽  
Song Xing

In this paper, a novel iterative discrete estimation (IDE) algorithm, which is called the modified IDE (MIDE), is proposed to reduce the computational complexity in MIMO detection in uplink massive MIMO systems. MIDE is a revision of the alternating direction method of multipliers (ADMM)-based algorithm, in which a self-updating method is designed with the damping factor estimated and updated at each iteration based on the Euclidean distance between the iterative solutions of the IDE-based algorithm in order to accelerate the algorithm’s convergence. Compared to the existing ADMM-based detection algorithm, the overall computational complexity of the proposed MIDE algorithm is reduced from O N t 3 + O N r N t 2 to O N t 2 + O N r N t in terms of the number of complex-valued multiplications, where Ntand Nr are the number of users and the number of receiving antennas at the base station (BS), respectively. Simulation results show that the proposed MIDE algorithm performs better in terms of the bit error rate (BER) than some recently-proposed approximation algorithms in MIMO detection of uplink massive MIMO systems.


2021 ◽  
Author(s):  
◽  
Shuang Li

<p>This thesis considers the analysis of matched filtering (MF) processing in massive multi-user multiple-input-multiple-output (MU-MIMO) wireless communication systems. The main focus is the analysis of system performance for combinations of two linear processers, analog maximum ratio combining (MRC) and digital MRC. We consider implementations of these processing techniques both at a single base-station (BS) and in distributed BS layouts. We further consider extremely low complexity distributed variants of MRC for such systems. Since MRC relies on the massive MIMO properties of favourable propagation (FP) and channel hardening, we also present a detailed analysis of FP and channel hardening. This analysis employs modern ray-based models rather than classical channel models as the models are more reliable for the large arrays and higher frequencies envisaged for future systems.  The importance of MRC processing is being driven by the emergence of massive MIMO and millimetre wave as strong candidates for next generation wireless communication systems. Massive MIMO explores the spatial dimension by providing significant increases in data rate, link reliability and energy efficiency. However, with a large number of antennas co-located in a fixed physical space, correlation between the elements of antennas may have a negative impact. Distributed systems, where the total number of antennas are divided into different locations, make this problem less serious. Also, linear processing techniques, analog MRC and digital MRC, due to their simplicity and efficiency, are more practical in massive MU-MIMO systems. For these reasons we consider MRC processing in both co-located and distributed scenarios.  Although distributed systems reduce the adverse impact of correlation caused by closely-spaced large antenna arrays by dividing the antennas into multiple antenna clusters, the correlation within the cluster still exists. Thus, we extend MRC analysis for massive MIMO to correlated channels. Approximations of expected per-user spectrum efficiency (SE) with correlation effects for massive MIMO systems with analog MRC and digital MRC are derived. Useful insights are given for future system deployments. A convergence analysis of the interference behaviour under different correlation models is presented.  Furthermore, a distributed fully cooperative system, where all the received signals are sent to the central processor, offers attractive performance gains but at the cost of high computational complexity at the central node. Thus, we propose four low-complexity, two-stage processors, where only processed signals after local processing (first-stage) are transmitted to the global processing node (second-stage). We present analytical expressions for the expected per user SINR in an uplink distributed MU-MIMO system with two-stage beam-forming. This leads to an approximation of expected per-user SE.  The analysis of both millimetre wave and massive MIMO systems requires a strong link to the physical environment and ray-based models are more practical and suitable for such systems. However, it is unclear how the key properties in conventional MIMO systems, such as FP and channel hardening, will behave in a ray-based channel model. In this thesis, remarkably simple and general results are obtained demonstrating that: a) channel hardening may or may nor occur depending on the nature of the channel models; b) FP is guaranteed for all models as long as the ray angles are continuous random variables; c) we also propose a novel system metric, denoted large system potential (LSP) as the ratio of the mean desired signal power to the total mean interference power, where both the numbers of antennas and end-users are growing to infinity at a fixed ratio. We derive simple approximations to LSP and demonstrate that LSP will not normally hold as the mean interference power usually grows logarithmically relative to the mean signal power.</p>


Sign in / Sign up

Export Citation Format

Share Document