scholarly journals A Low Cost Wearable Medical Device for Vital Signs Monitoring in Low-Resource Settings

Author(s):  
Muhammad Niswar ◽  
Muhammad Nur ◽  
Idar Mappangara

Medical devices are often expensive, so people in low-income countries cannot afford them. This paper presents the design of a low-cost wearable medical device to measure vital signs of a patient including heart rate, blood oxygen saturation level (SpO2) and respiratory rate. The wearable medical device mainly consists of a microcontroller and two biomedical sensors including airflow thermal sensor to measure respiratory rate and pulse oximeter sensor to measure SpO2 and heart rate. We can monitor the vital signs from a smartphone using a web browser through IEEE802.11 wireless connectivity to the wearable medical device. Furthermore, the wearable medical device requires simple management to operate; hence, it can be easily used. Performance evaluation results show that the designed wearable medical device works as good as a standard SpO2 device and it can measure the respiratory rate properly.  The designed wearable medical device is inexpensive and appropriate for low-resource settings. Moreover, as its components are commonly available in the market, it easy to assembly and repair locally.

2021 ◽  
Vol 118 (20) ◽  
pp. e2100466118
Author(s):  
Dennis Ryu ◽  
Dong Hyun Kim ◽  
Joan T. Price ◽  
Jong Yoon Lee ◽  
Ha Uk Chung ◽  
...  

Vital signs monitoring is a fundamental component of ensuring the health and safety of women and newborns during pregnancy, labor, and childbirth. This monitoring is often the first step in early detection of pregnancy abnormalities, providing an opportunity for prompt, effective intervention to prevent maternal and neonatal morbidity and mortality. Contemporary pregnancy monitoring systems require numerous devices wired to large base units; at least five separate devices with distinct user interfaces are commonly used to detect uterine contractility, maternal blood oxygenation, temperature, heart rate, blood pressure, and fetal heart rate. Current monitoring technologies are expensive and complex with implementation challenges in low-resource settings where maternal morbidity and mortality is the greatest. We present an integrated monitoring platform leveraging advanced flexible electronics, wireless connectivity, and compatibility with a wide range of low-cost mobile devices. Three flexible, soft, and low-profile sensors offer comprehensive vital signs monitoring for both women and fetuses with time-synchronized operation, including advanced parameters such as continuous cuffless blood pressure, electrohysterography-derived uterine monitoring, and automated body position classification. Successful field trials of pregnant women between 25 and 41 wk of gestation in both high-resource settings (n = 91) and low-resource settings (n = 485) demonstrate the system’s performance, usability, and safety.


2020 ◽  
Author(s):  
Hen-Wei Huang ◽  
peter chai ◽  
Claas Ehmke ◽  
Gene Merewether ◽  
Fara Dadabhoy ◽  
...  

The COVID-19 pandemic has accelerated methods to facilitate contactless evaluation of patients in hospital settings. By minimizing unnecessary in-person contact with individuals who may have COVID-19 disease, healthcare workers (HCW) can prevent disease transmission, and conserve personal protective equipment. Obtaining vital signs is a ubiquitous task that is commonly done in-person. To eliminate the need for in-person contact for vital signs measurement in the hospital setting, we developed Dr. Spot, an agile quadruped robotic system that comprises a set of contactless monitoring systems for measuring vital signs and a tablet computer to enable face-to-face medical interviewing. Dr. Spot is teleoperated by trained clinical staff to facilitate enhanced telemedicine. Specifically, it has the potential to simultaneously measure skin temperature, respiratory rate, heart rate, and blood oxygen saturation simultaneously while maintaining social distancing from the patients. This is important because fluctuations in vital sign parameters are commonly used in algorithmic decisions to admit or discharge individuals with COVID-19 disease. Here, we deployed Dr. Spot in a hospital setting with the ability to measure the vital signs from healthy volunteers from which the measurements of elevated skin temperature screening, respiratory rate, heart rate, and SpO2 were carefully verified with ground-truth sensors.


2020 ◽  
Author(s):  
Hen-Wei Huang ◽  
peter chai ◽  
Claas Ehmke ◽  
Gene Merewether ◽  
Fara Dadabhoy ◽  
...  

The COVID-19 pandemic has accelerated methods to facilitate contactless evaluation of patients in hospital settings. By minimizing unnecessary in-person contact with individuals who may have COVID-19 disease, healthcare workers (HCW) can prevent disease transmission, and conserve personal protective equipment. Obtaining vital signs is a ubiquitous task that is commonly done in-person. To eliminate the need for in-person contact for vital signs measurement in the hospital setting, we developed Dr. Spot, an agile quadruped robotic system that comprises a set of contactless monitoring systems for measuring vital signs and a tablet computer to enable face-to-face medical interviewing. Dr. Spot is teleoperated by trained clinical staff to facilitate enhanced telemedicine. Specifically, it has the potential to simultaneously measure skin temperature, respiratory rate, heart rate, and blood oxygen saturation simultaneously while maintaining social distancing from the patients. This is important because fluctuations in vital sign parameters are commonly used in algorithmic decisions to admit or discharge individuals with COVID-19 disease. Here, we deployed Dr. Spot in a hospital setting with the ability to measure the vital signs from healthy volunteers from which the measurements of elevated skin temperature screening, respiratory rate, heart rate, and SpO2 were carefully verified with ground-truth sensors.


2021 ◽  
Vol 3 ◽  
Author(s):  
Assumpta Nantume ◽  
Sona Shah ◽  
Teresa Cauvel ◽  
Matthew Tomback ◽  
Ryan Kilpatrick ◽  
...  

The neoGuard™ technology is a wireless wearable vital signs monitor attached to a patient's forehead to continuously measure oxygen saturation, pulse rate, respiratory rate and temperature. Developed with feedback from more than 400 health workers, primarily in East Africa, the product has been designed to meet the unique constraints of low-resource settings. This perspective piece by the innovators of neoGuard™ and some of their key partners examines the complicated journey of taking a medical technology from concept through clinical validation and finally to market. By shedding light on some of the most critical steps and common challenges encountered along the pathway to commercialization, the authors hope that their experiences will provide some valuable insights to other aspiring innovators in this space.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 914.2-914
Author(s):  
S. Boussaid ◽  
M. Ben Majdouba ◽  
S. Jriri ◽  
M. Abbes ◽  
S. Jammali ◽  
...  

Background:Music therapy is based on ancient cross-cultural beliefs that music can have a “healing” effect on mind and body. Research determined that listening to music can increase comfort and relaxation, relieve pain, lower distress, reduce anxiety, improve positive emotions and mood, and decrease psychological symptoms. Music therapy has been used greatly in various medical procedures to reduce associated anxiety and pain. Patients have a high level of anxiety when they are in the hospital, this is the case of patients with rheumatic diseases who consult regularly to have intravenous infusion of biological therapies.Objectives:The purpose of this study was to examine the effectiveness of music therapy on pain, anxiety, and vital signs among patients with chronic inflammatory rheumatic diseases during intravenous infusion of biological drugs.Methods:Fifty patients were divided into two groups: The experimental group G1 (n=25) received drug infusion while lestening to soft music (30 minutes); and the control group G2 (n=25) received only drug infusion. Measures include pain, anxiety, vital signs (blood pressure, heart rate and respiratory rate). The pain was measured using visual analogic scale (VAS). The state-trait anxiety inventory (STAI) was used for measuring anxiety, low anxiety ranges from 20 to 39, the moderate anxiety ranges from 40 to 59, and high anxiety ranges from 60 to 80. Vital signs (systolic blood pressure [SBP], diastolic blood pressure [DBP], heart rate [HR], and respiratory rate [RR]) were measured before, during and immediately after the infusion.Statistical package for social sciences (SPSS) was used for analysis.Results:The mean age in G1 was 44.45 years (26-72) with a sex ratio (M/F) of 0.8. Including the 25 patients, 12 had rheumatoid arthritis, 10 had ankylosing spondylitis and 3 had psoriatic arthritis. The mean disease duration was 8 years. In G2, the mean age was 46 years (25-70) with a sex ratio (M/F) of 0.75, 12 had rheumatoid arthritis, 11 had ankylosing spondylitis and 2 had psoriatic arthritis. The mean disease duration was 7.5 years. The biological drugs used were: Infliximab in 30 cases, Tocilizumab in 12 cases and Rituximab in 8 cases.Before the infusion, the patients of experimental group had a mean VAS of 5/10±3, a mean STAI of 50.62±6.01, a mean SBP of 13.6 cmHg±1.4, a mean DBP of 8.6 cmHg±1, a mean HR of 85±10 and a mean RR of 18±3. While in control group the mean VAS was 5.5±2, the mean STAI was 50.89±5.5, the mean SBP was 13.4±1.2, the mean DBP was 8.8±1.1, the mean HR was 82±8 and the mean RR was 19±2.During the infusion and after music intervention in G1, the mean STAI became 38.35±5 in G1 versus 46.7±5.2 in G2 (p value=0.022), the mean SBP became 12.1±0.5 in G1 versus 13±1 in G2 (p=0.035), the mean DBP became 8.1±0.8 in G1 versus 8.4±0.9 in G2 (p=0.4), the mean HR became 76±9 in G1 versus 78±7 in G2 (p=0.04) and the mean RR became 17.3±2.1 in G1 versus 18.2±1.7 in G2 (p=0.39).This study found a statistically significant decrease in anxiety, systolic blood pressure and heart rate in patients receiving music interventions during biological therapies infusion, but no significant difference were identified in diastolic blood pressure and respiratory rate.Conclusion:The findings provide further evidence to support the use of music therapy to reduce anxiety, and lower systolic blood pressure and heart rate in patients with rheumatic disease during biological therapies infusion.References:[1] Lin, C., Hwang, S., Jiang, P., & Hsiung, N. (2019).Effect of Music Therapy on Pain After Orthopedic Surgery -A Systematic review and Meta-Analysis. Pain Practice.Disclosure of Interests:None declared


2014 ◽  
Vol 80 (3) ◽  
pp. 218
Author(s):  
N. Lo ◽  
A. Navlekar ◽  
E. Palmgren ◽  
R. Rekhi ◽  
F. Ussher ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Carlo Massaroni ◽  
Daniel Simões Lopes ◽  
Daniela Lo Presti ◽  
Emiliano Schena ◽  
Sergio Silvestri

Vital signs monitoring is pivotal not only in clinical settings but also in home environments. Remote monitoring devices, systems, and services are emerging as tracking vital signs must be performed on a daily basis. Different types of sensors can be used to monitor breathing patterns and respiratory rate. However, the latter remains the least measured vital sign in several scenarios due to the intrusiveness of most adopted sensors. In this paper, we propose an inexpensive, off-the-shelf, and contactless measuring system for respiration signals taking as region of interest the pit of the neck. The system analyses video recorded by a single RGB camera and extracts the respiratory pattern from intensity variations of reflected light at the level of the collar bones and above the sternum. Breath-by-breath respiratory rate is then estimated from the processed breathing pattern. In addition, the effect of image resolution on monitoring breathing patterns and respiratory rate has been investigated. The proposed system was tested on twelve healthy volunteers (males and females) during quiet breathing at different sensor resolution (i.e., HD 720, PAL, WVGA, VGA, SVGA, and NTSC). Signals collected with the proposed system have been compared against a reference signal in both the frequency domain and time domain. By using the HD 720 resolution, frequency domain analysis showed perfect agreement between average breathing frequency values gathered by the proposed measuring system and reference instrument. An average mean absolute error (MAE) of 0.55 breaths/min was assessed in breath-by-breath monitoring in the time domain, while Bland-Altman showed a bias of −0.03 ± 1.78 breaths/min. Even in the case of lower camera resolution setting (i.e., NTSC), the system demonstrated good performances (MAE of 1.53 breaths/min, bias of −0.06 ± 2.08 breaths/min) for contactless monitoring of both breathing pattern and breath-by-breath respiratory rate over time.


2020 ◽  
Vol 15 ◽  
pp. 155892502097726
Author(s):  
Wei Wang ◽  
Zhiqiang Pang ◽  
Ling Peng ◽  
Fei Hu

Performing real-time monitoring for human vital signs during sleep at home is of vital importance to achieve timely detection and rescue. However, the existing smart equipment for monitoring human vital signs suffers the drawbacks of high complexity, high cost, and intrusiveness, or low accuracy. Thus, it is of great need to develop a simplified, nonintrusive, comfortable and low cost real-time monitoring system during sleep. In this study, a novel intelligent pillow was developed based on a low-cost piezoelectric ceramic sensor. It was manufactured by locating a smart system (consisting of a sensing unit i.e. a piezoelectric ceramic sensor, a data processing unit and a GPRS communication module) in the cavity of the pillow made of shape memory foam. The sampling frequency of the intelligent pillow was set at 1000 Hz to capture the signals more accurately, and vital signs including heart rate, respiratory rate and body movement were derived through series of well established algorithms, which were sent to the user’s app. Validation experimental results demonstrate that high heart-rate detection accuracy (i.e. 99.18%) was achieved in using the intelligent pillow. Besides, human tests were conducted by detecting vital signs of six elder participants at their home, and results showed that the detected vital signs may well predicate their health conditions. In addition, no contact discomfort was reported by the participants. With further studies in terms of validity of the intelligent pillow and large-scale human trials, the proposed intelligent pillow was expected to play an important role in daily sleep monitoring.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255338
Author(s):  
Siddharth Doshi ◽  
Samhita P. Banavar ◽  
Eliott Flaum ◽  
Surendra Kulkarni ◽  
Ulhas Vaidya ◽  
...  

Global shortages of N95 respirators have led to an urgent need of N95 decontamination and reuse methods that are scientifically validated and available world-wide. Although several large scale decontamination methods have been proposed (hydrogen peroxide vapor, UV-C); many of them are not applicable in remote and low-resource settings. Heat with humidity has been demonstrated as a promising decontamination approach, but care must be taken when implementing this method at a grassroots level. Here we present a simple, scalable method to provide controlled humidity and temperature for individual N95 respirators which is easily applicable in low-resource settings. N95 respirators were subjected to moist heat (>50% relative humidity, 65–80°C temperature) for over 30 minutes by placing them in a sealed container immersed in water that had been brought to a rolling boil and removed from heat, and then allowing the containers to sit for over 45 minutes. Filtration efficiency of 0.3–4.99 μm incense particles remained above 97% after 5 treatment cycles across all particle size sub-ranges. This method was then repeated at a higher ambient temperature and humidity in Mumbai, using standard utensils commonly found in South Asia. Similar temperature and humidity profiles were achieved with no degradation in filtration efficiencies after 6 cycles. Higher temperatures (>70°C) and longer treatment times (>40 minutes) were obtained by insulating the outer vessel. We also showed that the same method can be applied for the decontamination of surgical masks. This simple yet reliable method can be performed even without electricity access using any heat source to boil water, from open-flame stoves to solar heating, and provides a low-cost route for N95 decontamination globally applicable in resource-constrained settings.


Author(s):  
Seung-Ho Park ◽  
Kyoung-Su Park

Abstract As the importance of continuous vital signs monitoring increases, the need for wearable devices to measure vital sign is increasing. In this study, the device is designed to measure blood pressure (BP), respiratory rate (RR), and heartrate (HR) with one sensor. The device is in earphone format and is manufactured as wireless type using Arduino-based bluetooth module. The device measures pulse signal in the Superficial temporal artery using Photoplethysmograghy (PPG) sensor. The device uses the Auto Encoder to remove noise caused by movement, etc., contained in the pulse signal. Extract the feature from the pulse signal and use them for the vital sign measurement. The device is measured using Slope transit time (STT) method for BP and Respiratory sinus arrhythmia (RSA) method for RR. Finally, the accuracy is determined by comparing the vital signs measured through the device with the reference vital signs measured simultaneously.


Sign in / Sign up

Export Citation Format

Share Document