scholarly journals Resonance frequency analysis of laser optical fiber based on microcantilever

Author(s):  
Mohanad Aljanabi

<p>The normal frequency of smart beams was originated utilizing FEM [Ansys and Comsol] code for first five modes by varying the position of actuator from the fixed end of the structure, and it has a suitable arrangement with analytically found the standard frequency. This paper includes learning a resonance frequency analysis of laser optical fiber based on microcantilever of designing magnetic actuator using Ansys and Comsol simulation. The design of optical fiber includes Nickel cantilever, two magnets and one coil that apply to force on the cantilever. After the current flows in the coil domain, the shape of microcantilever will be deformed. It will move to z- direction that depends on the force direction. Two methods including, Comsol Multiphysics, Ansys and analytical equations have been utilized to calculate the resonance frequency, current and force values. The simulation results include calculating the current (magnetic current density) and effects of the magnetic field of the coil on the cantilever (force calculation). Utilizing this method is to limit faults(errors) of optical fiber laser between transmitter and receiver system (detection system) for any time of cutting coil when the signal of a laser passes through the coil. In conculsions, resonant frequency (f_n) tuning using cantilivier presented in the resrach have larger variable range by using simulations. However,the adjusting of the system and changing the deminsions.Resolutions to this problematic contain tuning the modes of resonant frequency to produce by cantilivier with  2-magnets and coil when the signal  pass from  laser source. Based on these simulations and characterization results, the proposed assembly can be a good applicant for evolving a low price, high material platform for many biological, laser optical fiber, communication, machine learning, biosensors and biomedical applications. </p>

Author(s):  
Mohanad H. Ali

<p>Biosensors depend on cantilevers have developed a promising tool for detecting biomedical, optical laser communication and many fields of interactions with high accuracy. We modeled the operation of cantilevers<strong> </strong>with two magnetic and coil using Ansys program. This simulation technique can capably be used to select the appropriate design and dimensions of cantilever with the geometry of system. The primary main of the magnetic design is to improve the geometry of the coil and shape to yield a highly uniform for 3D of optical fiber includes Silica Glass and  Nickel cantilever, two magnets and one coil that apply to force on the cantilever cylinder is using as a cantilever in the designing of this case.In conclusion,resonant frequency(  tuning applying cantilivier presented in the resracher have larger variable range by using 2-magnets with the coil.However,the adjusting of the system and changing the deminsions.Resolutions to this problematic contain tuning the modes of resonant frequency to produce by cantilivier with  2-magnets and coil when the signal  pass from  laser source. Based on these simulations and characterization results, the proposed assembly can be a good applicant for evolving a low price, high material platform for many biological, laser optical fiber, communication, machine learning, biosensors and biomedical applications.</p>


2020 ◽  
Vol 46 (3) ◽  
pp. 182-189 ◽  
Author(s):  
Davide Farronato ◽  
Mattia Manfredini ◽  
Michele Stocchero ◽  
Mattia Caccia ◽  
Lorenzo Azzi ◽  
...  

The aim of this study was to evaluate the influence of bone quality, drilling technique, implant diameter, and implant length on insertion torque (IT) and resonance frequency analysis (RFA) of a prototype-tapered implant with knife-edge threads. The investigators hypothesized that IT would be affected by variations in bone quality and drilling protocol, whereas RFA would be less influenced by such variables. The investigators implemented an in vitro experiment in which a prototype implant was inserted with different testing conditions into rigid polyurethane foam blocks. The independent variables were: bone quality, drilling protocol, implant diameter, and implant length. Group A implants were inserted with a conventional drilling protocol, whereas Group B implants were inserted with an undersized drilling protocol. Values of IT and RFA were measured at implant installation. IT and RFA values were significantly correlated (Pearson correlation coefficient: 0.54). A multivariable analysis showed a strong model. Higher IT values were associated with drilling protocol B vs A (mean difference: 71.7 Ncm), implant length (3.6 Ncm increase per mm in length), and substrate density (0.199 Ncm increase per mg/cm3 in density). Higher RFA values were associated with drilling protocol B vs A (mean difference: 3.9), implant length (1.0 increase per mm in length), and substrate density (0.032 increase per mg/cm3 in density). Implant diameter was not associated with RFA or IT. Within the limitations of an in vitro study, the results of this study suggest that the studied implant can achieve good level of primary stability in terms of IT and RFA. A strong correlation was found between values of IT and RFA. Both parameters are influenced by the drilling protocol, implant length, and substrate density. Further studies are required to investigate the clinical response in primary stability and marginal bone response.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bada Choi ◽  
Ye Chan Lee ◽  
Kyung Chul Oh ◽  
Jae Hoon Lee

Abstract Background This study aimed to investigate the effects of ultraviolet (UV) photofunctionalization on the stability of implants during the early phase in the posterior region of the maxilla. The study was a randomized double-blinded clinical trial. Half of the participants received conventional commercial implants while the other half received UV-irradiated implants. The surgical sites were classified into three bone quality groups (II, III, IV) based on the grayscale value measured on cone-beam computed tomography. The values obtained from resonance frequency analysis were recorded immediately after implant placement and at 4 weeks and at 4 months postoperatively. The marginal bone level of the implants was evaluated using periapical radiographs at 4 weeks, 4 months, and 1 year postoperatively. Results Fifty-seven implants placed in 34 participants were analyzed in this study. In group III, significant differences were observed in terms of the differences of resonance frequency analysis values at 4 weeks (p = 0.004) and 4 months (p = 0.017) postoperatively. In group II, the UV-treated group showed significantly lesser bone loss at 4 weeks post-operatively (p = 0.037). Conclusions Within the limitation of the present study, we concluded that UV surface treatment on implants may increase the initial stability in the region of the maxilla with poor bone quality.


Author(s):  
Ingrid Kästel ◽  
Giles de Quincey ◽  
Jörg Neugebauer ◽  
Robert Sader ◽  
Peter Gehrke

Abstract Background There is disagreement about the optimal torque for tightening smartpegs for resonance frequency analysis (RFA). Subjective finger pressure during hand tightening could affect the reliability of the resulting values. The aim of the current study was therefore to assess whether or not the insertion torque of a smartpeg magnetic device influences the implant stability quotient (ISQ) value during RFA. Methods Thirty self-tapping screw implants (XiVE S, Dentsply Sirona Implants, Bensheim, Germany) with a diameter of 3.8 mm and a length of 11 mm were inserted in three cow ribs with a bone quality of D1. The RFA value of each implant was measured (Ostell, FA W&H Dentalwerk, Bürmoos, Austria) in two orthogonal directions (mesial and buccal) after tightening the corresponding smartpeg type 45 with a mechanically defined value of 5 Ncm (Meg Torq device, Megagen, Daegu, South Korea) (test). Additionally, 4 different examiners measured the RFA after hand tightening the smartpegs, and the results were compared (control). Insertion torque values were determined by measuring the unscrew torque of hand seated smartpegs (Tohnichi Manufacturing Co. Ltd, Tokyo, Japan). Results The ISQ values varied from 2 to 11 Ncm by hand tightening and from 2 to 6 Ncm by machine tightening. The comparison of hand and machine tightening of smartpegs displayed only minor differences in the mean ISQ values with low standard deviations (mesial 79.76 ± 2,11, buccal 77.98 ± 2,) and no statistical difference (mesial p = 0,343 and buccal p = 0,890). Conclusions Manual tightening of smartpeg transducers allows for an objective and reliable determination of ISQ values during RFA.


Author(s):  
Reza Harirforoush ◽  
Siamak Arzanpour

This paper investigates primary stability of dental implant that indicates the process of bone-implant integration. This integration is known to happen at the boundary of the bone and dental implant contact surface. The resonance frequency of dental implant is used as the parameter for this investigation due to its high sensitivity to boundary condition variations. In this study, resonance frequency analysis (RFA) of the jaw-implant structure is carried out using finite element modeling. The FEM analyses are conducted in ANSYS modal analysis simulation environment. The FEM model of the structure includes titanium implant, Cancellous and cortical bone. Different implant-bone interface conditions are studied for this investigation. Various boundary conditions were studied to identify natural frequencies of jaw-implant structure. Our analysis shows that the resonance frequency of the implant increases during the healing period and reaches a plateau when the implant-bone interface was fully integrated. The results show that RFA could be suggested as a non-invasive, reliable and accurate diagnostic method for early assessment of the healing stages.


Sign in / Sign up

Export Citation Format

Share Document