scholarly journals Swarm Based Cross Layer Optimization Protocol for WMSN

Author(s):  
DeepaliParag Adhyapak ◽  
Sridharan Bhavani ◽  
Aparna Pradeep Laturkar

Wireless Multimedia Sensor Network (WMSN) is comprised of tiny, low cost multimedia devices such as video cameras and microphones. These networks can transfer scalar as well as multimedia data into real time as well as non-real time applications. However addition of such devices exposes additional challenges on both QoS assurance and energy efficiency for efficient use of resources.  This paper presents cross layer based AntSenseNet protocol to meet various QoS requirements such as throughput, jitter, lifetime and packet delivery ratio in order to improve network lifetime. Cross layer routing protocol utilizes scheduling algorithm and AntSenseNet protocol builds hierarchical structure and able to use multipath routing protocol.  Simulation results shows Cross layer based AntSenseNet protocol outperforms Ant Sense routing protocol and cross layer routing protocol in terms of throughput and packet delivery ratio

Author(s):  
Deepali Parag Adhyapak ◽  
Sridharan Bhavani ◽  
Aparna Pradeep Laturkar

<p>Wireless Multimedia Sensor Network (WMSN) is comprised of tiny, low cost multimedia devices such as video cameras and microphones. These networks can transfer scalar as well as multimedia data into real time as well as non-real time applications. However addition of such devices exposes additional challenges on both QoS assurance and energy efficiency for efficient use of resources.  This paper presents cross layer based AntSenseNet protocol to meet various QoS requirements such as throughput, jitter, lifetime and packet delivery ratio in order to improve network lifetime. Cross layer routing protocol utilizes scheduling algorithm and AntSenseNet protocol builds hierarchical structure and able to use multipath routing protocol.  Simulation results shows Cross layer based AntSenseNet protocol outperforms Ant Sense routing protocol and cross layer routing protocol in terms of throughput and packet delivery ratio.</p>


2020 ◽  
Vol 13 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Neha Sharma ◽  
Sherin Zafar ◽  
Usha Batra

Background: Zone Routing Protocol is evolving as an efficient hybrid routing protocol with an extremely high potentiality owing to the integration of two radically different schemes, proactive and reactive in such a way that a balance between control overhead and latency is achieved. Its performance is impacted by various network conditions such as zone radius, network size, mobility, etc. Objective: The research work described in this paper focuses on improving the performance of zone routing protocol by reducing the amount of reactive traffic which is primarily responsible for degraded network performance in case of large networks. The usage of route aggregation approach helps in reducing the routing overhead and also help achieve performance optimization. Methods: The performance of proposed protocol is assessed under varying node size and mobility. Further applied is the firefly algorithm which aims to achieve global optimization that is quite difficult to achieve due to non-linearity of functions and multimodality of algorithms. For performance evaluation a set of benchmark functions are being adopted like, packet delivery ratio and end-to-end delay to validate the proposed approach. Results: Simulation results depict better performance of leading edge firefly algorithm when compared to zone routing protocol and route aggregation based zone routing protocol. The proposed leading edge FRA-ZRP approach shows major improvement between ZRP and FRA-ZRP in Packet Delivery Ratio. FRA-ZRP outperforms traditional ZRP and RA-ZRP even in terms of End to End Delay by reducing the delay and gaining a substantial QOS improvement. Conclusion: The achievement of proposed approach can be credited to the formation on zone head and attainment of route from the head hence reduced queuing of data packets due to control packets, by adopting FRA-ZRP approach. The routing optimized zone routing protocol using Route aggregation approach and FRA augments the QoS, which is the most crucial parameter for routing performance enhancement of MANET.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1633 ◽  
Author(s):  
Beom-Su Kim ◽  
Sangdae Kim ◽  
Kyong Hoon Kim ◽  
Tae-Eung Sung ◽  
Babar Shah ◽  
...  

Many applications are able to obtain enriched information by employing a wireless multimedia sensor network (WMSN) in industrial environments, which consists of nodes that are capable of processing multimedia data. However, as many aspects of WMSNs still need to be refined, this remains a potential research area. An efficient application needs the ability to capture and store the latest information about an object or event, which requires real-time multimedia data to be delivered to the sink timely. Motivated to achieve this goal, we developed a new adaptive QoS routing protocol based on the (m,k)-firm model. The proposed model processes captured information by employing a multimedia stream in the (m,k)-firm format. In addition, the model includes a new adaptive real-time protocol and traffic handling scheme to transmit event information by selecting the next hop according to the flow status as well as the requirement of the (m,k)-firm model. Different from the previous approach, two level adjustment in routing protocol and traffic management are able to increase the number of successful packets within the deadline as well as path setup schemes along the previous route is able to reduce the packet loss until a new path is established. Our simulation results demonstrate that the proposed schemes are able to improve the stream dynamic success ratio and network lifetime compared to previous work by meeting the requirement of the (m,k)-firm model regardless of the amount of traffic.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1942
Author(s):  
Rogaia Mhemed ◽  
Frank Comeau ◽  
William Phillips ◽  
Nauman Aslam

Much attention has been focused lately on the Opportunistic Routing technique (OR) that can overcome the restrictions of the harsh underwater environment and the unique structures of the Underwater Sensor Networks (UWSNs). OR enhances the performance of the UWSNs in both packet delivery ratio and energy saving. In our work; we propose a new routing protocol; called Energy Efficient Depth-based Opportunistic Routing with Void Avoidance for UWSNs (EEDOR-VA), to address the void area problem. EEDOR-VA is a reactive OR protocol that uses a hop count discovery procedure to update the hop count of the intermediate nodes between the source and the destination to form forwarding sets. EEDOR-VA forwarding sets can be selected with less or greater depth than the packet holder (i.e., source or intermediate node). It efficiently prevents all void/trapped nodes from being part of the forwarding sets and data transmission procedure; thereby saving network resources and delivering data packets at the lowest possible cost. The results of our extensive simulation study indicate that the EEDOR-VA protocol outperforms other protocols in terms of packet delivery ratio and energy consumption


Author(s):  
RENDI DIAN PRASETIA ◽  
DOAN PERDANA ◽  
RIDHA MULDINA NEGARA

ABSTRAKSalah satu permasalahan di kota-kota besar adalah kemacetan lalu lintas yang disebabkan karena tidak mencukupinya ruas jalan, volume kendaraan yang begitu besar, persebaran kendaraan yang tidak merata dan lain-lain. Salah satu solusinya adalah para pengendara dapat menggunakan aplikasi peta digital pada smartphone-nya. Oleh karena itu perlu dilakukan pengimbangan beban trafik kendaraan. Pada penelitian ini akan dibahas mengenai kinerja VANET yang menggunakan protokol routing GPSR dan AODV dengan skema pengimbangan beban trafik kendaraan dengan pengaruh kepadatan node. Perancangan sistem simulasi terbagi menjadi dua subsistem yaitu subsistem mobilitas dan jaringan. Kemudian dilakukan pengimbangan beban trafik kendaraan, dan kinerja VANET akan diamati. Performansi dievaluasi dengan average end to end delay, throughput, dan packet delivery ratio. Nilai rata-rata throughput, PDR, delay untuk GPSR adalah 142.21 Kbps, 87.47 %, dan 82.83 ms. Sedangkan AODV adalah 119.81 Kbps, 86.67 %, dan 103.21 ms. Dari hasil penelitian nilai QoS performansi dari routing protocol GPSR lebih baik dari pada AODV pada VANET.Kata kunci: Vanet, Pengimbangan Beban, GPSR, AODV.ABSTRACTOne of the problems in big cities is congestion. The congestion is caused byinsufficient road segment, large volume of vehicles, unbalanced spread ofvehicles and others. One solution is that riders can use digital map applications on their smartphones. Therefore it is necessary to balancing the traffic load of vehicles. In this research will be discussed about VANET performance using GPSR and AODV routing protocol with vehicle traffic load balancing scheme with node density influence. The design of the simulation system is divided into two subsystems namely mobility and network subsystem. Then balancing the vehicle traffic load, and VANET performance will be observed. Performance is evaluated with the average end to end delay, throughput, and packet delivery ratio. The mean value of throughput, PDR, delay for GPSR respectively 142.21 Kbps, 87.47%, and 82.83 ms. While AODV is 119.81 Kbps, 86.67%, and 103.21 ms. From the simulation results can be concluded that the performance of GPSR is better than AODV on VANET. Keywords: Vanet, Load Balancing, GPSR, AODV.


2018 ◽  
Vol 19 (2) ◽  
pp. 80-89
Author(s):  
Rosminazuin Ab. Rahim ◽  
Abdallah Awad ◽  
Aisha Hassan Abdalla Hashim ◽  
ALIZA AINI MD RALIB

ABSTRACT: The current de-facto routing protocol over Low Power and Lossy Networks (LLN) developed by the IETF Working Group (6LOWPAN), is named as Routing Protocol for Low Power and Lossy networks (RPL). RPL in the network layer faces throughput  challenges due to the potential  large networks, number of nodes, and that  multiple  coexisting applications  will  be  running  in  the  same physical layer.  In this study, a node metric for RPL protocol based on the node’s Queue Backlogs is introduced, which leads to a better throughput performance while maintaining the delay and the ability to use with different network applications. This metric depends on the length of Packet Queue of the nodes with the consideration of other link and node metrics, like ETX or energy usage, leading to better load balancing in the network. To implement and evaluate the proposed metric compared to other RPL metrics, ContikiOS and COOJA simulator are used. Extensive simulations have been carried out in a systematic way resulting in a detailed analysis of the introduced metric namely W-metric, expected transmission count (ETX) and objective function zero (OF0) that uses hop-count as a routing metric. The analysis and comparison are based on five performance parameters, which are throughput, packet delivery ratio (PDR), latency, average queue length, and power consumption. Simulation results show that the introduced W-metric has a good performance compared to other RPL metrics with regards to performance parameters mentioned above. At the same time, the results show that its latency performance is comparable with other RPL routing metrics. In a sample simulation of 500 seconds with 25 nodes and with nodes sending packets periodically to the network root at a rate of 1 packet per 4 seconds, W-metric showed a very efficient throughput of 5.16 kbps, an increase of 8.2% compared to ETX. Results showed that it has a packet delivery ratio of 93.3%, which is higher compared to 83.3% for ETX and 74.2% for OF0. Average queue length of 0.48 packet shows improvement of 15.8% better than ETX. In addition, it exhibits an energy consumption of 5.16 mW which is 2.1% less than ETX. Overall, W-metric appears to be a promising alternative to ETX and OF0 as it selects routes that are more efficient by working on load balancing of the network and by considering the link characteristics. ABSTRAK: Protokol penghalaan de-facto semasa ke atas Rangkaian Kekuatan Rendah dan Lossy yang dibangunkan oleh Kumpulan Kerja IETF (6LOWPAN), dinamakan Protokol Penghalaan untuk Kekuatan Rendah dan Rugi (RPL). RPL dalam lapisan rangkaian menghadapi cabaran throughput berikutan jangkaan rangkaian besar, bilangan nod dan aplikasi berganda bersama akan diproses dalam lapisan fizikal yang sama. Dalam kajian ini, satu metrik nod untuk protokol RPL berdasarkan pada Backend Queue node diperkenalkan, yang membawa kepada prestasi yang lebih baik sambil mengekalkan kelewatan dan keupayaan untuk digunakan dengan aplikasi rangkaian yang berbeza. Metrik ini bergantung pada panjang Packet Queue dari node dengan pertimbangan metrik lain dan nodus lain, seperti ETX atau penggunaan tenaga, yang mengarah kepada keseimbangan beban yang lebih baik dalam rangkaian. Untuk melaksanakan dan menilai metrik yang dicadangkan berbanding metrik RPL lain, ContikiOS dan COOJA simulator telah digunakan. Simulasi meluas telah dijalankan dengan cara yang sistematik yang menghasilkan analisis terperinci mengenai metrik yang diperkenalkan iaitu W-metrik, kiraan penghantaran dijangkakan (ETX) dan fungsi objektif sifar (OF0) yang menggunakan kiraan hop sebagai metrik penghalaan. Analisis dan perbandingan adalah  berdasarkan lima parameter prestasi, iaitu throughput, nisbah penghantaran paket (PDR), latency, panjang panjang antrian, dan penggunaan kuasa. Hasil simulasi menunjukkan bahawa W-metrik yang diperkenalkan mempunyai prestasi yang lebih baik berbanding dengan metrik RPL lain berkaitan dengan parameter prestasi yang dinyatakan di atas. Pada masa yang sama, hasil menunjukkan bahawa prestasi latency W-metrik adalah setanding dengan metrik penghalaan RPL yang lain. Dalam simulasi sampel 500 saat dengan 25 nod dan dengan nod yang menghantar paket secara berkala ke akar rangkaian pada kadar 1 paket setiap 4 saat, W-metrik menunjukkan keluaran yang sangat efisien iaitu 5.16 kbps, peningkatan sebanyak 8.2% berbanding ETX. Keputusan menunjukkan bahawa ia mempunyai nisbah penghantaran paket 93.3%, yang lebih tinggi berbanding 83.3% untuk ETX dan 74.2% untuk OF0. Purata panjang giliran 0.48 packet menunjukkan peningkatan 15.8% lebih baik daripada ETX. Di samping itu, ia mempamerkan penggunaan tenaga sebanyak 5.16 mW iaitu 2.1% kurang daripada ETX. Secara keseluruhan, W-metrik nampaknya menjadi alternatif yang berpotensi menggantikan ETX dan OF0 kerana ia memilih laluan yang lebih cekap dengan bekerja pada keseimbangan beban rangkaian dan dengan mempertimbangkan ciri-ciri pautan.


Author(s):  
Geetanjali Rathee ◽  
Hemraj Saini

Secure routing is considered as one of a key challenge in mesh networks because of its dynamic and broadcasting nature. The broadcasting nature of mesh environment invites number of security vulnerabilities to come and affect the network metrics drastically. Further, any node/link failure of a routed path may reduce the performance of the entire network. A number of secure routing protocols have been proposed by different researchers but enhancement of a single network parameter (i.e. security) may affect another performance metrics significantly i.e. throughput, end to end delay, packet delivery ratio etc. In order to ensure secure routing with improved network metrics, a Secure Buffer based Routing Protocol i.e. SBRP is proposed which ensures better network performance with increased level of security. SBRP protocol uses buffers at alternate positions to fasten re-routing mechanism during node/link failure and ensures the security using AES encryption. Further the protocol is analyzed against mAODV protocol in both static and dynamic environment in terms of security, packet delivery ratio, end to end delay and network throughput.


Author(s):  
Manish Kumar ◽  
Rajeev Tripathi ◽  
Sudarshan Tiwari

The WSNs replace the medium of communication from wired to wireless in industrial environment. This offer several advantages that includes easy and fast installation, low-cost maintenance and energy saving. In industrial monitoring and control application, the sensory measures should be delivered to control center in predefined deadline time, so the necessary actions may timely initiated. The geographical routing as reactive routing protocol plays a massive role for real-time packet delivery. The proposed routing protocol follows path discovery on demand basis to reduce the path discovery overhead. Moreover, the routing protocol follows weighted forwarding node selection process. This selects the shorter path over speedy reliable links for smaller deadline time and distributes the traffic over energy efficient node for larger deadline time. Through simulation, the authors demonstrate, compared to existing routing protocol the proposed routing protocol improves the packet delivery ratio along with enhanced network life while maintaining the high energy efficiency and low delivery latency.


Author(s):  
Joy Iong-Zong Chen ◽  
S Smys

In recent years, both developed and developing countries have witnessed an increase in the number of traffic accidents. Aside from a significant rise in the overall number of on-road commercial and non-commercial vehicles, advancements in transportation infrastructure and on-road technologies may result in road accidents, which generally result in high mortality. More than half of these fatalities are the result of delayed response by medical and rescue personnel. If an accident site receives quick medical treatment, an accident victim's chances of survival may improve considerably. Based on the IoT-based multiple-level vehicle environment, this study proposes a low-cost accident detection and alarm system. Vehicles are equipped with a "Black Box" board unit and an accident location identification module for the Global Positioning System (GPS), in addition to mechanical sensors (accelerometer, gyroscope) for accurate accident detection. This study has evaluated the proposed system with average packet delivery ratio (PDR) vs. relay nodes. Our simulation results have evaluated the evolution of relay nodes in the mobile / sensor node through internet gateway. It has also been demonstrated that the packet delivery ratio is inversely related to the incremental number of relay nodes.


Author(s):  
Irfan Ahmad ◽  
Fahad Masood ◽  
Arbab Wajid Ullah Khan

In Mobile Ad hoc Networks (MANET) nodes often change their location independently where neither fixed nor centralized infrastructure is present. Nodes communicate with each other directly or via intermediate nodes. The advantages of the MANET layout lead to self-structure and compatibility to most important functions such as traffic distribution and load balancing. Whenever the host moves rapidly in the network the topology becomes updated due to which the structure of MANET varies accordingly. In the literature, different routing protocols have been studied and compared by researchers. Still, there are queries regarding the performance of these protocols under different scenarios. MANETs are not based on a predesigned structure. In this paper, the performance assessment of the Quality of Services (QoS) for different protocols such as Ad hoc On-Demand Distance Vector (AODV), Temporally Ordered Routing Algorithm (TORA) and Zone Routing Protocol (ZRP) in the existence of the various number of communicating nodes is studied. The performance matrices throughput, end – to – end delay and packet delivery ratio are considered for simulations. Ns 2.35 simulator is used for carrying out these simulations. Results are compared for AODV, TORA, and ZRP routing protocols. The results show that AODV and TORA perform well in end – to – end delay as compared to zone routing protocol. Zone routing protocol performs well in packet delivery ratio and throughput as compared to both the other protocols.


Sign in / Sign up

Export Citation Format

Share Document