scholarly journals Modelling of a Low Frequency Based Rectangular Shape Piezoelectric Cantilever Beam for Energy Harvesting Applications

Author(s):  
Ramizi Mohamed ◽  
Mahidur R. Sarker ◽  
Azah Mohamed

<p>Harvesting few amount of charge from environmental ambient sources namely, wind, thermal, heat, vibration, solar utilizing micro scale energy harvesting devices, offers vast view of powering for numerous portable low power electronic devices. However, power harvesting using piezoelectric crystal from low power ambient source nowdays has increasing popularity with the advantages of low cost, long life time, stability and clean energy.  Recent trends have shown that most researchers are interested in designing a low resonance frequency vibration based energy harvesting devices despite of its challenges ahead. In this paper, a low frequency based rectangular shape piezoelectric cantilever beam has been developed for energy harvesting applications. The proposed vibration based low frequency cantilever beam using piezoelectric element has been developed by finite element analysis (FEA) employing COMSOL Multiphysics platform. The main goal of the study is to analyze the outcome of geometric model of a piezoelectric cantilever beam and to calculate the resonance frequency of the structure according to its length. The material of PZT-5H, has been considered to enhance the efficiency of the low frequency based cantilever beam. Finally, the proposed result is compared with other existing works.</p>

2013 ◽  
Vol 562-565 ◽  
pp. 1052-1057 ◽  
Author(s):  
Xing Qiang Zhao ◽  
Zhi Yu Wen ◽  
Li Cheng Deng ◽  
Guo Xi Luo ◽  
Zheng Guo Shang ◽  
...  

A micro piezoelectric cantilever beam array is designed for vibration energy harvesting. A single degree of freedom analytical model is developed to predict the properties of the device and is verified by finite element method. The piezoelectric material Aluminum Nitride was chosen for the compatibility with the CMOS process. The devices consisting of 5 piezoelectric cantilever beams and one proof mass were fabricated using micromachining technology. The resonance frequency, voltage and power were tested at excitation acceleration of 5.0 g. The maximum output power of the device is 9.13 μW at the resonance frequency of 1315 Hz when piezoelectric beams are connected in parallel.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


2008 ◽  
Vol 20 (5) ◽  
pp. 625-632 ◽  
Author(s):  
Yonas Tadesse ◽  
Shujun Zhang ◽  
Shashank Priya

In this study, we report a multimodal energy harvesting device that combines electromagnetic and piezoelectric energy harvesting mechanism. The device consists of piezoelectric crystals bonded to a cantilever beam. The tip of the cantilever beam has an attached permanent magnet which, oscillates within a stationary coil fixed to the top of the package. The permanent magnet serves two purpose (i) acts as a tip mass for the cantilever beam and lowers the resonance frequency, and (ii) acts as a core which oscillates between the inductive coils resulting in electric current generation through Faraday's effect. Thus, this design combines the energy harvesting from two different mechanisms, piezoelectric and electromagnetic, on the same platform. The prototype system was optimized using the finite element software, ANSYS, to find the resonance frequency and stress distribution. The power generated from the fabricated prototype was found to be 0.25 W using the electromagnetic mechanism and 0.25 mW using the piezoelectric mechanism at 35 g acceleration and 20 Hz frequency.


2015 ◽  
Vol 754-755 ◽  
pp. 481-488
Author(s):  
Bibi Nadia Taib ◽  
Norhayati Sabani ◽  
Chan Buan Fei ◽  
Mazlee Mazalan ◽  
Mohd Azarulsani Md Azidin

Thin film piezoelectric material plays a vital role in micro-electromechanical systems (MEMS), due to its low power requirements and the availability of high energy harvesting. Zinc oxide is selected for piezoelectric material because of its high piezoelectric coupling coefficient, easy to deposit on silicon substrate and excellent adhesion. Deposited ZnO and Al improve the electrical properties, electrical conductivity and thermal stability. The design, fabrication and experimental test of fabricated MEMS piezoelectric cantilever beams operating in d33 mode were presented in this paper. PVD (Physical Vapor Deposition) was selected as the deposition method for aluminium while spincoating was chosen to deposit ZnO thin film. The piezoelectric cantilever beam is arranged with self-developed experimental setup consisting of DC motor and oscilloscope. Based on experimental result, the longer length of piezoelectric cantilever beam produce higher output voltage at oscilloscope. The piezoelectric cantilevers generated output voltages which were from 2.2 mV to 8.8 mV at 50 Hz operation frequency. One of four samples achieved in range of desired output voltage, 1-3 mV and the rest samples produced a higher output voltage. The output voltage is adequate for a very low power wireless sensing nodes as a substitute energy source to classic batteries.


Sign in / Sign up

Export Citation Format

Share Document