scholarly journals Badminton player detection using faster region convolutional neural network

Author(s):  
Nur Azmina Rahmad ◽  
Nur Anis Jasmin Sufri ◽  
Nurul Hamizah Muzamil ◽  
Muhammad Amir As'ari

Nowadays, coaches and sport analyst are concerning about sport performance analysis through sport video match. However, they still used conventional method which is through manual observation of the full video that is very troublesome because they might miss some meaningful information presence in the video. Several previous studies have discussed about tracking ball movements, identification of player based on jersey color and number as well as player movement detection in various type of sport such as soccer and volleyball but not in badminton. Therefore, this study focused on developing an automated system using Faster Region Convolutional Neural Network (Faster R-CNN) to track the position of the badminton player from the sport broadcast video. In preparing the dataset for training and testing, several broadcast videos were converted into image frames before labelling the region which indicate the players. After that, several different trained Faster R-CNN detectors were produced from the dataset before tested with different set of videos to evaluate the detector performance. In evaluating the performance of each detector model, the average precision was obtained from precision recall graph. As a result, this study revealed that the detector successfully detects the player when the detector is being fed with more generalized dataset.

2018 ◽  
Vol 10 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Rizqa Raaiqa Bintana ◽  
Chastine Fatichah ◽  
Diana Purwitasari

Community-based question answering (CQA) is formed to help people who search information that they need through a community. One condition that may occurs in CQA is when people cannot obtain the information that they need, thus they will post a new question. This condition can cause CQA archive increased because of duplicated questions. Therefore, it becomes important problems to find semantically similar questions from CQA archive towards a new question. In this study, we use convolutional neural network methods for semantic modeling of sentence to obtain words that they represent the content of documents and new question. The result for the process of finding the same question semantically to a new question (query) from the question-answer documents archive using the convolutional neural network method, obtained the mean average precision value is 0,422. Whereas by using vector space model, as a comparison, obtained mean average precision value is 0,282. Index Terms—community-based question answering, convolutional neural network, question retrieval


2021 ◽  
Vol 11 (13) ◽  
pp. 6085
Author(s):  
Jesus Salido ◽  
Vanesa Lomas ◽  
Jesus Ruiz-Santaquiteria ◽  
Oscar Deniz

There is a great need to implement preventive mechanisms against shootings and terrorist acts in public spaces with a large influx of people. While surveillance cameras have become common, the need for monitoring 24/7 and real-time response requires automatic detection methods. This paper presents a study based on three convolutional neural network (CNN) models applied to the automatic detection of handguns in video surveillance images. It aims to investigate the reduction of false positives by including pose information associated with the way the handguns are held in the images belonging to the training dataset. The results highlighted the best average precision (96.36%) and recall (97.23%) obtained by RetinaNet fine-tuned with the unfrozen ResNet-50 backbone and the best precision (96.23%) and F1 score values (93.36%) obtained by YOLOv3 when it was trained on the dataset including pose information. This last architecture was the only one that showed a consistent improvement—around 2%—when pose information was expressly considered during training.


Author(s):  
Hongguo Su ◽  
Mingyuan Zhang ◽  
Shengyuan Li ◽  
Xuefeng Zhao

In the last couple of years, advancements in the deep learning, especially in convolutional neural networks, proved to be a boon for the image classification and recognition tasks. One of the important practical applications of object detection and image classification can be for security enhancement. If dangerous objects or scenes can be identified automatically, then a lot of accidents can be prevented. For this purpose, in this paper we made use of state-of-the-art implementation of Faster Region-based Convolutional Neural Network (Faster R-CNN) based on the monitoring video of hoisting sites to train a model to detect the dangerous object and the worker. By extracting the locations of them, object-human interactions during hoisting, mainly for changes in their spatial location relationship, can be understood whereby estimating whether the scene is safe or dangerous. Experimental results showed that the pre-trained model achieved good performance with a high mean average precision of 97.66% on object detection and the proposed method fulfilled the goal of dangerous scenes recognition perfectly.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Jintao Wang ◽  
Mingxia Shen ◽  
Longshen Liu ◽  
Yi Xu ◽  
Cedric Okinda

Digestive diseases are one of the common broiler diseases that significantly affect production and animal welfare in broiler breeding. Droppings examination and observation are the most precise techniques to detect the occurrence of digestive disease infections in birds. This study proposes an automated broiler digestive disease detector based on a deep Convolutional Neural Network model to classify fine-grained abnormal broiler droppings images as normal and abnormal (shape, color, water content, and shape&water). Droppings images were collected from 10,000 25-35-day-old Ross broiler birds reared in multilayer cages with automatic droppings conveyor belts. For comparative purposes, Faster R-CNN and YOLO-V3 deep Convolutional Neural Networks were developed. The performance of YOLO-V3 was improved by optimizing the anchor box. Faster R-CNN achieved 99.1% recall and 93.3% mean average precision, while YOLO-V3 achieved 88.7% recall and 84.3% mean average precision on the testing data set. The proposed detector can provide technical support for the detection of digestive diseases in broiler production by automatically and nonintrusively recognizing and classifying chicken droppings.


2020 ◽  
Vol 17 (6) ◽  
pp. 172988142096696
Author(s):  
Jie Niu ◽  
Kun Qian

In this work, we propose a robust place recognition measurement in natural environments based on salient landmark screening and convolutional neural network (CNN) features. First, the salient objects in the image are segmented as candidate landmarks. Then, a category screening network is designed to remove specific object types that are not suitable for environmental modeling. Finally, a three-layer CNN is used to get highly representative features of the salient landmarks. In the similarity measurement, a Siamese network is chosen to calculate the similarity between images. Experiments were conducted on three challenging benchmark place recognition datasets and superior performance was achieved compared to other state-of-the-art methods, including FABMAP, SeqSLAM, SeqCNNSLAM, and PlaceCNN. Our method obtains the best results on the precision–recall curves, and the average precision reaches 78.43%, which is the best of the comparison methods. This demonstrates that the CNN features on the screened salient landmarks can be against a strong viewpoint and condition variations.


2019 ◽  
Vol 10 (3) ◽  
pp. 60-73 ◽  
Author(s):  
Ravinder Ahuja ◽  
Daksh Jain ◽  
Deepanshu Sachdeva ◽  
Archit Garg ◽  
Chirag Rajput

Communicating through hand gestures with each other is simply called the language of signs. It is an acceptable language for communication among deaf and dumb people in this society. The society of the deaf and dumb admits a lot of obstacles in day to day life in communicating with their acquaintances. The most recent study done by the World Health Organization reports that very large section (around 360 million folks) present in the world have hearing loss, i.e. 5.3% of the earth's total population. This gives us a need for the invention of an automated system which converts hand gestures into meaningful words and sentences. The Convolutional Neural Network (CNN) is used on 24 hand signals of American Sign Language in order to enhance the ease of communication. OpenCV was used in order to follow up on further execution techniques like image preprocessing. The results demonstrated that CNN has an accuracy of 99.7% utilizing the database found on kaggle.com.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Sufian A. Badawi ◽  
Muhammad Moazam Fraz

The arterioles and venules (AV) classification of retinal vasculature is considered as the first step in the development of an automated system for analysing the vasculature biomarker association with disease prognosis. Most of the existing AV classification methods depend on the accurate segmentation of retinal blood vessels. Moreover, the unavailability of large-scale annotated data is a major hindrance in the application of deep learning techniques for AV classification. This paper presents an encoder-decoder based fully convolutional neural network for classification of retinal vasculature into arterioles and venules, without requiring the preliminary step of vessel segmentation. An optimized multiloss function is used to learn the pixel-wise and segment-wise retinal vessel labels. The proposed method is trained and evaluated on DRIVE, AVRDB, and a newly created AV classification dataset; and it attains 96%, 98%, and 97% accuracy, respectively. The new AV classification dataset is comprised of 700 annotated retinal images, which will offer the researchers a benchmark to compare their AV classification results.


Author(s):  
M A Isayev ◽  
D A Savelyev

The comparison of different convolutional neural networks which are the core of the most actual solutions in the computer vision area is considers in hhe paper. The study includes benchmarks of this state-of-the-art solutions by some criteria, such as mAP (mean average precision), FPS (frames per seconds), for the possibility of real-time usability. It is concluded on the best convolutional neural network model and deep learning methods that were used at particular solution.


Fruit grading is a process that affect quality control and fruit-processing industries to meet the efficiency of its production and society. However, these industries have suffered from lack of standards in quality control, higher time of grading and low product output because of the use of manual methods. To meet the increasing demand of quality fruit products, fruit-processing industries must consider automating their fruit grading process. Several algorithms have been proposed over the years to achieve this purpose and their works were based on color, shape and inability to handle large dataset which resulted in slow recognition accuracy. To mitigate these flaws, we develop an automated system for grading and classification of apple using Convolutional Neural Network (CNN) used in image recognition and classification. Two models were developed from CNN using ResNet50 as its convolutional base, a process called transfer learning. The first model, the apple checker model (ACM) performs the recognition of the image with two output connections (apple and non-apple) while the apple grader model (AGM) does the classification of the image that has four output classes (spoiled, grade A, grade B & grade C) if the image is an apple. A comparison evaluation of both models were conducted and experimental results show that the ACM achieved a test accuracy of 100% while the AGM obtained recognition rate of 99.89%.The developed system may be employed in food processing industries and related life applications.


Sign in / Sign up

Export Citation Format

Share Document