scholarly journals Probing signals with ZACZ for GPRonboard of unmanned aerial vehicle

Author(s):  
Roman N. Ipanov ◽  
Aleksey A. Komarov

<p><span>Modern ground penetrating radars (</span><span>GPR</span><span>), designed to determine the thickness of ice or search for the occurrence of aquifers in arid regions of the Earth, are installed either on helicopters or on the earth's surface. The use of a helicopter is economically expensive, and the installation of GPRs on the earth's surface is of a local nature. Modern GPRs mainly use video pulse probing signals and probing signals with linear frequency modulation. These signals have correlation noise, which makes it difficult to obtain a high-quality radar image. In this work, we propose to use a signal with a zero autocorrelation zone (ZACZ) as a probing signal for GPR installed on an unmanned aerial vehicle. In work, a polyphase probing signal with a ZACZ is synthesized and a comparative analysis of the correlation characteristics of the synthesized signal with the optimal phase-code shift keyed signal is carried out. </span></p>

2021 ◽  
Vol 13 (4) ◽  
pp. 560
Author(s):  
Xianguo Zhang ◽  
Chengyan Lin ◽  
Tao Zhang ◽  
Daowu Huang ◽  
Derong Huang ◽  
...  

Bar top hollows (BTHs) are morphological elements recognized in modern braided rivers; however, information regarding their depositional features and types of filling units in ancient strata is unclear. This is an important reason behind why it is difficult to identify BTH units in subsurface reservoirs. A Middle Jurassic dryland sandy braided river outcrop in northwestern China is characterized in this study through the application of an unmanned aerial vehicle (UAV) surveying and mapping, and ground penetrating radar (GPR). A workflow of UAV data processing has been established, and a 3D digital outcrop model has been built. By observation and measurement of the outcrop model and GPR profiles, two types of BTH filled units were found: (a) sandstone-filled, and (b) mudstone-filled hollows. Both of these units were located between two adjacent bar units in an area that is limited to a compound bar, and were developed in the upper part of a braided bar depositional sequence. The ellipse-shaped, sandstone-filled unit measures 10 m × 27 m in map view and reaches a maximum thickness of 5 m. The transversal cross-section across the BTHs displays a concave upward basal surface, while the angle of the inclined structures infilling the BTHs decreases up-section. The GPR data show that, in the longitudinal profile, the basal surface is relatively flat, and low-angle, inclined layers can be observed in the lower- and middle part of the sandstone-filled BTHs. In contrast, no obvious depositional structures were observed in the mudstone-filled BTH in outcrop. The new understanding of BTH has a wide application, including the optimization of CO2 storage sites, fresh water aquifers exploration, and oil and gas reservoir characterization.


2018 ◽  
Vol 161 ◽  
pp. 03021 ◽  
Author(s):  
Vinh Nguyen ◽  
Oksana Solenaya ◽  
Petr Smirnov

Adding an onboard manipulation system to an unmanned aerial vehicle (UAV) significantly complicates framework, functioning algorithms, and leads to an increase in overall dimensions. The physical interaction of the manipulator with objects influences to unstabilization of UAV, which in turn leads to difficulties in positioning the UAV and reduces the accuracy of gripper motion. In addition, the physical interaction of the manipulator with objects requires increased power resources of UAVs. The article analyzes modern research of UAVs with a manipulator, including flight control problems, avoidance of contact with the earth, surrounding space, as well as manipulations with the captured object. On the basis of the analysis, a list of new problems arising in the physical interaction of UAVs with objects through an embedded manipulator is formulated.


2020 ◽  
Vol 12 (12) ◽  
pp. 2023 ◽  
Author(s):  
Pier Matteo Barone ◽  
Elizabeth Wueste ◽  
Richard Hodges

A collaboration between the American University of Rome, the Municipality of Giove, and Soprintendenza Archeologia, Belle Arti e Paesaggio dellʼUmbria has resulted in an academic project aimed at a preliminary evaluation of a particular area along the Tiber river that straddles the border between Umbria and Lazio. Archaeological prospection methods, such as Unmanned Aerial Vehicle (UAV)-based remote sensing, ground-penetrating radar (GPR), and photogrammetry, have made it possible to better study the landscape with respect to not only the changes the area has undergone recently, but also its evolution during the Roman and Medieval periods, while keeping the main communication route represented by the Tiber river as its fulcrum.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 45100-45112 ◽  
Author(s):  
Maria Garcia Fernandez ◽  
Yuri Alvarez Lopez ◽  
Ana Arboleya Arboleya ◽  
Borja Gonzalez Valdes ◽  
Yolanda Rodriguez Vaqueiro ◽  
...  

2019 ◽  
Vol 1 (2) ◽  
pp. 81-88
Author(s):  
Ulziisaikhan Ganbold ◽  
Oyuntsetseg Dash

It is an alternative science, as the geomorphology plays out in a complex geographic, topo-graphic setting in which both the tectonic and climate processes responsible for driving evolution of the topography change in style and intensity. Geomorphology is a relatively young science, growing along with interest in other aspects of the earth sciences in the mid-19th century. While geomorphological development continues to grow steadily today, there is a need to use some advanced theoretical and mapping techniques. This paper is issued to cover the creation of topographic maps with a scale of 1 : 50 000 of geodetic measurements by terrestrial a laser scanner and an unmanned aerial vehicle (UAV) for geomorphological map.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2800
Author(s):  
Triven Koganti ◽  
Ehsan Ghane ◽  
Luis Rene Martinez ◽  
Bo V. Iversen ◽  
Barry J. Allred

Agricultural subsurface drainage systems are commonly installed on farmland to remove the excess water from poorly drained soils. Conventional methods for drainage mapping such as tile probes and trenching equipment are laborious, cause pipe damage, and are often inefficient to apply at large spatial scales. Knowledge of locations of an existing drainage network is crucial to understand the increased leaching and offsite release of drainage discharge and to retrofit the new drain lines within the existing drainage system. Recent technological developments in non-destructive techniques might provide a potential alternative solution. The objective of this study was to determine the suitability of unmanned aerial vehicle (UAV) imagery collected using three different cameras (visible-color, multispectral, and thermal infrared) and ground penetrating radar (GPR) for subsurface drainage mapping. Both the techniques are complementary in terms of their usage, applicability, and the properties they measure and were applied at four different sites in the Midwest USA. At Site-1, both the UAV imagery and GPR were equally successful across the entire field, while at Site-2, the UAV imagery was successful in one section of the field, and GPR proved to be useful in the other section where the UAV imagery failed to capture the drainage pipes’ location. At Site-3, less to no success was observed in finding the drain lines using UAV imagery captured on bare ground conditions, whereas good success was achieved using GPR. Conversely, at Site-4, the UAV imagery was successful and GPR failed to capture the drainage pipes’ location. Although UAV imagery seems to be an attractive solution for mapping agricultural subsurface drainage systems as it is cost-effective and can cover large field areas, the results suggest the usefulness of GPR to complement the former as both a mapping and validation technique. Hence, this case study compares and contrasts the suitability of both the methods, provides guidance on the optimal survey timing, and recommends their combined usage given both the technologies are available to deploy for drainage mapping purposes.


2021 ◽  
Vol 310 ◽  
pp. 04004
Author(s):  
Vladimir Bezmenov

The angular elements of external orientation characterize the position of a shooting camera relative to the coordinate system in which the spatial coordinates of the points of the object under study are determined from the processing of its images. In many cases of aerial photography, e.g. shooting from an unmanned aerial vehicle, as well as in the case of space survey, the values of the orientation angles could be very significant. This paper presents the results of numerical experiments for five different systems of external orientation angles (Euler angles). The studies were performed using the condition of complanarity, which is the basis of space forward intersection. For a space forward intersection, a model of errors in determining spatial coordinates for five systems of shooting camera orientation angles has been developed. In the numerical experiments, the general case of aerial photography from an unmanned aerial vehicle and of space survey of the Earth were simulated. By comparing the root-mean-square errors (RMSE) in determining the spatial coordinates obtained using the studied systems of external orientation angles, the features of the use of these systems of orientation angles were revealed. The results of the research will allow to determine the spatial coordinates of the points of the studied objects with a greater degree of reliability by photogrammetry methods.


2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document