scholarly journals Enhancement in pneumatic positioning system using nonlinear gain constrained model predictive controller: experimental validation

Author(s):  
Siti Fatimah Sulaiman ◽  
M. F. Rahmat ◽  
Ahmad Athif Faudzi ◽  
Khairuddin Osman ◽  
N. H. Sunar

The issues of inaccurate positioning control have made an industrial use of pneumatic actuator remains restricted to certain applications only. Non-compliance with system limits and properly control the operating system may also degrade the performance of pneumatic positioning systems. This study proposed a new approach to enhance pneumatic positioning system while considering the constraints of system. Firstly, a mathematical model that represented the pneumatic system was determined by system identification approach. Secondly, model predictive controller (MPC) was developed as a primary controller to control the pneumatic positioning system, which took into account the constraints of the system. Next, to enhance the performance of the overall system, nonlinear gain function was incorporated within the MPC algorithm. Finally, the performances were compared with other control methods such as constrained MPC (CMPC), proportional-integral (PI), and predictive functional control with observer (PFC-O). The validation based on real-time experimental results for 100 mm positioning control revealed that the incorporation of nonlinear gain within the MPC algorithm improved 21.03% and 2.69% of the speed response given by CMPC and PFC-O, and reduced 100% of the overshoot given by CMPC and PI controller; thus, providing fast and accurate pneumatic positioning control system.

Author(s):  
Siti Fatimah Sulaiman ◽  
M. F. Rahmat ◽  
Ahmad Athif Faudzi ◽  
Khairuddin Osman ◽  
S. I. Samsudin ◽  
...  

Most of the controllers that were proposed to control the pneumatic positioning system did not consider the limitations or constraints of the system in their algorithms. Non-compliance with the prescribed system constraints may damage the pneumatic components and adversely affect its positioning accuracy, especially when the system is controlled in real-time environment. Model predictive controller (MPC) is one of the predictive controllers that is able to consider the constraint of the system in its algorithm. Therefore, constrained MPC (CMPC) was proposed in this study to improve the accuracy of pneumatic positioning system while considering the constraints of the system. The mathematical model of pneumatic system was determined by system identification technique and the control signal to the valves were considered as the constraints of the pneumatic system when developing the controller. In order to verify the accuracy and reliability of CMPC, repetitive experiments on the CMPC strategy was implemented. The existing predictive controller, that was used to control the pneumatic system such as predictive functional control (PFC), was also compared. The experimental results revealed that CMPC effectively improved the position accuracy of the pneumatic system compared to PFC strategy. However, CMPC not capable to provide a fast response as PFC.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2118
Author(s):  
Óscar de Francisco Ortiz ◽  
Irene Ortiz ◽  
Antonio Bueno

In any precision manufacturing process, positioning systems play a very important role in achieving a quality product. As a new approach to current systems, camera-LCD positioning systems are a new technology that can provide substantial improvements enabling better accuracy and repeatability. However, in order to provide stability to the system a global positioning system is required. This paper presents an improvement of a positioning system based on the treatment of images on an LCD in which a new algorithm with absolute reference has been implemented. The method is based on basic geometry and linear algebra applied to computer vision. The algorithm determines the spiral center using an image taken at any point. Consequently, the system constantly knows its position and does not lose its reference. Several modifications of the algorithm are proposed and compared. The simulation and test of the algorithm provide an important improvement in the reliability and stability of the positioning system providing errors of microns for the calculation of the global position used by the algorithm.


1970 ◽  
Vol 5 (2) ◽  
Author(s):  
Wahyudi Tarig Faisal and Abdulgani Albagul

Positioning systems generally need a good controller to achieve high accuracy, fast response and robustness. In addition, ease of controller design and simplicity of controller structure are very important for practical application.  For satisfying these requirements, nominal characteristic trajectory following controller (NCTF) has been proposed as a practical point-to-point (PTP) positioning control. However, the effect of actuator saturation can not be completely compensated for due to the integrator windup as the plant parameters vary. This paper presents a method to improve the NCTF controller for overcoming the problem of integrator windup using simple and classical tracking anti-windup scheme. The improved NCTF controller is evaluated through simulation using a rotary positioning system. The results show that the improved NCTF controller is adequate to compensate for the effect of integrator windup. Keywords: Positioning, point-to-point, integrator windup, compensation, controller, robustness.


2016 ◽  
Vol 679 ◽  
pp. 173-177
Author(s):  
Xue Song Chen ◽  
Xin Chen ◽  
Han Wang

In this paper, we present a new approach for modeling the hysteresis nonlinearity of a piezo-positioning systems. Because of its nonlinear hysteresis effect, the tracking control accuracy of the precision positioning system is difficulty achieved. Hence it is desirable to take hysteresis effect into consideration for improving the trajectory performance. A model reference adaptive optimal control scheme based on online actor-critic algorithm is developed. The proposed controller can be constructed without a nonlinear hysteresis dynamic equation to compensate the hysteresis effect. Simulation results show the effectiveness of the new approach.


2018 ◽  
Vol 215 (4) ◽  
pp. 143-155
Author(s):  
Paweł Zalewski ◽  
Roman Haberek ◽  
Mirosław Chmieliński

Abstract The paper presents the dynamic positioning system (DP), particularly its thruster allocation model, designed for ORP ‘Kormoran’, a Polish mine destroyer built for the Polish Navy in Remontowa Shipbuilding S.A. in Gdańsk. The ORP ‘Kormoran’ ship is the newest and best equipped minehunter ship in Europe. The main task of the new Polish mine destroyer is to search for, classify, identify and combat marine mines and improvised underwater explosives, recognize waterways, transport mines, deploy mines and provide remote control of self-propelled anti-mine platforms. The dynamic positioning control system of the ship presented in the article was constructed by Autocomp Management Ltd. from Szczecin, the only in Poland and one of the few producers of dynamic ship positioning systems in the world.


Sign in / Sign up

Export Citation Format

Share Document