scholarly journals The Effect of Distributed Generator Injection with Different Numbers of Units on Power Quality in the Electric Power System

Author(s):  
Robi Kurniawan ◽  
Ardiansyah Nasution ◽  
Arnawan Hasibuan ◽  
Muzamir Isa ◽  
Muskan Gard ◽  
...  

Distributed Generation (DG) is a small capacity generator located in the electricity distribution system and is usually placed on buses that are connected directly to the load. Placement of distributed generation is one of the technical efforts to reduce voltage drop and power losses in the system. In addition, load flow analysis is a study to plan and determine the amount of power in an electric power system. The results of power losses after adding distributed generation were the best in the fifth experiment on bus 149, where the system experienced a total loss of active power (P) previously of 720,822 kW, to 682,939 kW and total loss of reactive power (Q) previously of 530.02 kVar, to 405.835 kVar. From the results of the calculation of the power flow using ETAP software (Electrical Transient Analyzer Program). So, it can be concluded that the electrical network system can be said to be good. The results obtained are the more DG (wind turbine generator) that is input into the bus it will reduce the voltage drop that occurs. After simulating the overall voltage drop, it still meets the standards according to the results of the Text Report on ETAP.

Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 11-18
Author(s):  
Nailia Sh. Chemborisova ◽  
◽  
Ivan D. Chernenkov ◽  

The problem of selecting the electric power system control nodes is studied. By performing control of these modes, matters concerned with providing reliable power supply of the required quality to consumers can be settled in the most efficient manner. As an example, a fragment of the electric power system mathematical model used in the Finist mode-setting simulator for a power system dispatch control center operator is considered, which represents a highly branched electrical network consisting of eleven 110 kV nodes, three 220 kV nodes connected with the system, and two generator nodes. A new procedure for selecting the control nodes is proposed, which takes into account a combination of different indicators having different measurement units, dimensions and scales is proposed. These indicators characterize the following properties of power system nodes: the reactive power fraction absorbed at a node, the sensitivity of voltage to reactive load variations, the number of connected power lines, and statistical indicators characterizing the change of voltage at the nodes and reactive power flows for different options of installing the reactive power compensation devices. For combined use of these indicators, they were ranked according to the efficiency of installing reactive power compensation devices in the system. For each indicator, a scale of five ranks (intervals) is set, which determine the preferences (qualitative judgments) of the researcher in evaluating the reactive power compensation devices installation efficiency at the system nodes. The highest rank (5) corresponds to the maximum efficiency, and the lowest rank (1) corresponds to the minimum efficiency. To calculate the individual (integral) priority indicator of installing reactive power compensation devices, the ranks of indicators are added together, and their sum is divided by the product of the number of ranks by the number of the used indicators (features). Based on the calculation results, the rating (location) of each node is determined, and the nodes for installing the reactive power compensation devices are selected according to their effect on ensuring the electric power system operation reliability, active power losses in the network, and voltage regulation. Thus, a new procedure is presented for determining the integral indicators for comprehensively estimating the properties of complex electric power system nodes and selecting the controlled nodes using a system of various indicators. These indicators characterize the studied nodes in terms of the efficiency of installing reactive power compensation devices to reduce active power losses in the network, voltage regulation, and ensuring the electric power system operational reliability. The validity of the results obtained in the study is confirmed by their comparison with the indicators of the balance-conductivity method, which has proven itself in solving problems connected with determining the nodes for controlling electric power system operation modes.


Author(s):  
Ahmad Fateh Mohamad Nor ◽  
Marizan Sulaiman ◽  
Aida Fazliana Abdul Kadir ◽  
Rosli Omar

Voltage instability analysis in electric power system is one of the most important factors in order to maintain the equilibrium of the power system. A power system is said to be unstable if the system is not able to maintain the voltage at all buses in the system remain unchanged after the system is being subjected to a disturbance.The research work presented in this paper is about the analysis of voltage instability of electric power system by using voltage stability margin (VSM), load real power (P) margin, reactive power (Q) margin, reactive power-voltage (QV) and real power-voltage (PV) modal analysis. IEEE 30-bus system has been chosen as the power system. The load flow analysis are simulated by using Power World Simulator software version 16. Both QV and PV modal analysis were done by using MATLAB application software.


Author(s):  
Suliman Khan ◽  
Salim Ur Rehman ◽  
Anees Ur Rehman ◽  
Hashmat Khan

Because of increasing interest in renewable energy sources in recent times, the studies concerning integration of Distributed Generation (DG) to power grid have been increased rapidly. Apart from other benefits, loss reduction and voltage profile improvement are its salient features. Non-optimal locations of DG units may lead to increase power losses. Optimal location of DGs in power systems is vital to maximize overall system efficiency. In this approach, optimization techniques have been applied to determine the optimal allocation and impact of DG on electric power system in terms of power loss reduction are analyzed. The Newton Raphson load flow analysis has been carried out on 10 bus system using ETAP software which shows that active power losses were reduced from 3302.2 KW to 400.7 KW after the installation of 5MW.


Author(s):  
Fadhel Putra Winarta ◽  
Yoli Andi Rozzi

The study of electric power flow analysis (Load Flow) is intended to obtain information about the flow of power or voltage in an electric power system network. This information is needed to evaluate the performance of the power system. Electrical power flow problems include calculating the flow and system voltage at certain terminals or buses. The benefits of this power flow study are to find out the voltage at each node in the system, to find out whether all the equipment meets the specified limits to deliver the desired power, and to obtain the original conditions in the new system planning. This study is divided into two: the analysis of data when the conditions have not been added wind turbine and after the addition of 300 kW wind turbine with software power station ETAP software 12.6.0 and the Newton-Raphson method will be used in analyzing the power flow of the electric power system. Based on the results of the tests, it is found that the overall value of losses for power flow before the addition of DG is 0.031 MW and 0.037 Mvar, for the voltage drop with the lowest percentage, namely on bus 10 with a percentage of 96.45 for the 0.4 kV system and the 20 kV system on bus 19 with a percentage of 99.03, the largest% PF load was in lump 1 with 98.64 and the smallest% PF was in lump7 with a value of 84.92. The short circuit data value on the 20 kV bus system at Andalas University before the addition of DG with 3-phase disturbances averaged 13.354 A, 1-phase disturbances averaged 3.521 A, 2-phase disturbances averaged 11.719 A and 2 ground phases of 12.842 A Whereas for the value of power flow after the addition of DG in the form of the wind turbine of 300 kW the overall value of losses is 0.032 MW and 0.042 MvarAR, for the voltage drop with the percentage for voltage drop with the lowest percentage is bus 10 with a percentage of 96.63 for system 0, 4 kV and a 20 kV system on bus 14 with a percentage of 98.1, the largest% PF load is in lump 1 with 98.64 and the smallest% PF is in lump7 with a value of 84.92. The short circuit data value on the 20 kV bus system at Andalas University after the addition of DG with 3 phase disturbances has an average value of 13.354 A, 1 phase disturbance averages 3.523 A, 2 phase disturbances average 11.737 A and 2 phases ground is 12.059 A For the source in this system, after the addition of DG, there was a change in the% PF of the PLN grid, namely 79.53 and the wind turbine -83%.


Author(s):  
B. Papkov ◽  
V. Osokin

Modern power supply systems that have distributed generation and are connected to the electric power system, renewable energy sources, and storage devices, require changes in the assessment of their reliability indices. The complexity of the energy, technological, and organizational structures of power systems with distributed generation does not allow the traditional concept of "failure" to be used to assess their reliability. Many technological solutions used in the distributed generation projects can become sources of vulnerabilities in the infrastructure of an intelligent electrical network. The study shows that power systems with distributed generation are the structures with overlapping service areas, which determines their specific features represented by an integral characteristic - efficiency. It characterizes the extent to which the use of distributed generation facilities in various operating conditions is feasible. The paper proposes an approach to quantifying the efficiency of such systems. The presented examples demonstrate the calculation of relatively simple power systems with the distributed generation that perform several tasks simultaneously.


2020 ◽  
Vol 220 ◽  
pp. 01034
Author(s):  
Muhayo Toshkhodzhaeva ◽  
Elena Gracheva ◽  
Okhunbobo Rahimov ◽  
Shakhboz Dadabaev

This article provides a brief overview of the existing problems of managing the electric power system, taking into account the sources of distributed generation. The features of centralized and decentralized power supply systems are considered from the point of view of changing operating conditions, in particular, eliminating the consequences of technological violations. The main goals of the electric power system management have been determined, regardless of the number of sources and the category of consumers in terms of power supply reliability, as well as in emergency and post-emergency modes. The basic principles and sequence of power system management are presented. An algorithm for the efficiency of operation and dispatch control of the power system is considered, methods for ensuring the selective operation of relay protection and automation devices in the presence of several generating capacities are presented. A fragment of an electrical network with four energy sources is shown and the main measures to ensure its normal functioning are proposed.


Author(s):  
Hayatul Harifin ◽  
Novalio Daratha ◽  
M. Khairul Amri Rosa

AbstractLoad flow analysis is a study to plan and determine the amount of power in an electric power system. During its development, industry requires a large amount of electric power and uses electrical equipment as a means of production. The benefits of an electric load flow analysis are to find out the amount of power in the electric power system whether it still meets predetermined limits, and to find out the amount of voltage at each point, and to obtain initial conditions for the new system planning. Load flow analysis begins calculating the active power and reactive power at each node (bus) installed, loading on the channel or conductor, the load flow calculation will be assisted using the Julia program. From the results of calculations using the Julia program, the voltage at each point with the smallest stress is obtained, namely the 10th point of 209.89 - j10.34V for phase A, -107.39 - j186.87V for phase B, -108.12 + j178,51V for phase CKey Words: Drop Voltage, Julia, Load Flow


2012 ◽  
Vol 433-440 ◽  
pp. 7208-7212
Author(s):  
Ya Min Su Hlaing ◽  
Ze Ya Aung

This thesis implements power flow application, Newton-Raphson method. The Newton-Raphson method is mainly employed in the solution of power flow problems. The network of Myanma electric power system is used as the reference case. The system network contains 90 buses and 106 brunches. The weak points are found in the network by using Newton-Raphson method. Bus 16, 17, 85 and 86 have the most weak bus voltages. The medium transmission line between bus 87 and bus 17 is compensated by using MATLAB program software. The transmission line is compensated with shunt reactors, series and shunt capacitors to improve transient and steady-state stability, more economical loading, and minimum voltage dip on load buses and to supply the requisite reactive power to maintain the receiving end voltage at a satisfactory level. The system performance is tested under steady-state condition. This paper investigates and improves the steady–state operation of Myanma Power System Network.


Sign in / Sign up

Export Citation Format

Share Document