Video Monitoring Application using Wireless Sensor Node with Various External Antenna

Author(s):  
Amerrul Zabri ◽  
Mohamad Kamal A. Rahim ◽  
Farid Zubir ◽  
Norsaidah Muhamad Nadzir ◽  
Huda A. Majid

<p>Surveillance and monitoring has become very important for security reasons these days. The use of wireless sensor node device offers a variety of platform depends on the attached sensor. When an image sensor is attached, the wireless sensor node is capable of monitoring an area wirelessly. Since wireless environment uses antenna to transmit and receive data, antenna is an important component that affects the video monitoring performance. This paper describes a surveillance system using Raspberry Pi with various external antenna. The Raspberry Pi with Pi Camera module and various types of antennas was used for testing and experimentation in line-of-sight (LOS) and non-line-of-sight (NLOS) condition. The results revealed that the Yagi Uda antenna gives the best output in terms of its signal strength and average Receive (Rx) rate.<em></em></p>

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zhaozhuo Xu ◽  
Fangling Pu ◽  
Xin Fang ◽  
Jing Fu

Wireless sensor networks are proved to be effective in long-time localized torrential rain monitoring. However, the existing widely used architecture of wireless sensor networks for rain monitoring relies on network transportation and back-end calculation, which causes delay in response to heavy rain in localized areas. Our work improves the architecture by applying logistic regression and support vector machine classification to an intelligent wireless sensor node which is created by Raspberry Pi. The sensor nodes in front-end not only obtain data from sensors, but also can analyze the probabilities of upcoming heavy rain independently and give early warnings to local clients in time. When the sensor nodes send the probability to back-end server, the burdens of network transport are released. We demonstrate by simulation results that our sensor system architecture has potentiality to increase the local response to heavy rain. The monitoring capacity is also raised.


2013 ◽  
Vol 133 (4) ◽  
pp. 414-420 ◽  
Author(s):  
Tsuyoshi Suzuki ◽  
Takafumi Kobayashi ◽  
Kei Sawai ◽  
Kuniaki Kawabata ◽  
Fumiaki Takemura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document