Optimal Feature Selection Technique for Mel Frequency Cepstral Coefficient Feature Extraction in Classifying Infant Cry with Asphyxia

Author(s):  
A. Zabidi ◽  
W. Mansor ◽  
Khuan Y. Lee

<p>Mel Frequency Cepstral Coefficient is an efficient feature representation method for extracting human-audible audio signals. However, its representation of features is large and redundant. Therefore, feature selection is required to select the optimal subset of Mel Frequency Cepstral Coefficient features. The performance of two types of feature selection techniques; Orthogonal Least Squares and F-ratio for selecting Mel Frequency Cepstral Coefficient features of infant cry with asphyxia was examined. OLS selects the feature subset based on their contribution to the reduction of error, while F-Ratio selects them according to their discriminative abilities. The feature selection techniques were combined with Multilayer Perceptron to distinguish between asphyxiated infant cry and normal cry signals. The performance of the feature selection methods was examined by analysing the Multilayer Perceptron classification accuracy resulted from the combination of the feature selection techniques and Multilayer Perceptron. The results indicate that Orthogonal Least Squares is the most suitable feature selection method in classifying infant cry with asphyxia since it produces the highest classification accuracy.<em></em></p>

Author(s):  
Muhang Zhang ◽  
Xiaohong Shen ◽  
Lei He ◽  
Haiyan Wang

Feature selection is an essential process in the identification task because the irrelevant and redundant features contained in the unselected feature set can reduce both the performance and efficiency of recognition. However, when identifying the underwater targets based on their radiated noise, the diversity of targets, and the complexity of underwater acoustic channels introduce various complex relationships among the extracted acoustic features. For this problem, this paper employs the normalized maximum information coefficient (NMIC) to measure the correlations between features and categories and the redundancy among different features and further proposes an NMIC based feature selection method (NMIC-FS). Then, on the real-world dataset, the average classification accuracy estimated by models such as random forest and support vector machine is used to evaluate the performance of the NMIC-FS. The analysis results show that the feature subset obtained by NMIC-FS can achieve higher classification accuracy in a shorter time than that without selection. Compared with correlation-based feature selection, laplacian score, and lasso methods, the NMIC-FS improves the classification accuracy faster in the process of feature selection and requires the least acoustic features to obtain classification accuracy comparable to that of the full feature set.


Author(s):  
RONG LIU ◽  
ROBERT RALLO ◽  
YORAM COHEN

An unsupervised feature selection method is proposed for analysis of datasets of high dimensionality. The least square error (LSE) of approximating the complete dataset via a reduced feature subset is proposed as the quality measure for feature selection. Guided by the minimization of the LSE, a kernel least squares forward selection algorithm (KLS-FS) is developed that is capable of both linear and non-linear feature selection. An incremental LSE computation is designed to accelerate the selection process and, therefore, enhances the scalability of KLS-FS to high-dimensional datasets. The superiority of the proposed feature selection algorithm, in terms of keeping principal data structures, learning performances in classification and clustering applications, and robustness, is demonstrated using various real-life datasets of different sizes and dimensions.


Author(s):  
Mostafa A. Salama ◽  
Ghada Hassan

Multivariate feature selection techniques search for the optimal features subset to reduce the dimensionality and hence the complexity of a classification task. Statistical feature selection techniques measure the mutual correlation between features well as the correlation of each feature to the tar- get feature. However, adding a feature to a feature subset could deteriorate the classification accuracy even though this feature positively correlates to the target class. Although most of existing feature ranking/selection techniques consider the interdependency between features, the nature of interaction be- tween features in relationship to the classification problem is still not well investigated. This study proposes a technique for forward feature selection that calculates the novel measure Partnership-Gain to select a subset of features whose partnership constructively correlates to the target feature classification. Comparative analysis to other well-known techniques shows that the proposed technique has either an enhanced or a comparable classification accuracy on the datasets studied. We present a visualization of the degree and direction of the proposed measure of features’ partnerships for a better understanding of the measure’s nature.


Author(s):  
Chaonan Shen ◽  
Kai Zhang

AbstractIn recent years, evolutionary algorithms have shown great advantages in the field of feature selection because of their simplicity and potential global search capability. However, most of the existing feature selection algorithms based on evolutionary computation are wrapper methods, which are computationally expensive, especially for high-dimensional biomedical data. To significantly reduce the computational cost, it is essential to study an effective evaluation method. In this paper, a two-stage improved gray wolf optimization (IGWO) algorithm for feature selection on high-dimensional data is proposed. In the first stage, a multilayer perceptron (MLP) network with group lasso regularization terms is first trained to construct an integer optimization problem using the proposed algorithm for pre-selection of features and optimization of the hidden layer structure. The dataset is compressed using the feature subset obtained in the first stage. In the second stage, a multilayer perceptron network with group lasso regularization terms is retrained using the compressed dataset, and the proposed algorithm is employed to construct the discrete optimization problem for feature selection. Meanwhile, a rapid evaluation strategy is constructed to mitigate the evaluation cost and improve the evaluation efficiency in the feature selection process. The effectiveness of the algorithm was analyzed on ten gene expression datasets. The experimental results show that the proposed algorithm not only removes almost more than 95.7% of the features in all datasets, but also has better classification accuracy on the test set. In addition, the advantages of the proposed algorithm in terms of time consumption, classification accuracy and feature subset size become more and more prominent as the dimensionality of the feature selection problem increases. This indicates that the proposed algorithm is particularly suitable for solving high-dimensional feature selection problems.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Canyi Huang ◽  
Jianqiang Du ◽  
Bin Nie ◽  
Riyue Yu ◽  
Wangping Xiong ◽  
...  

The partial least squares method has many advantages in multivariable linear regression, but it does not include the function of feature selection. This method cannot screen for the best feature subset (referred to in this study as the “Gold Standard”) or optimize the model, although contrarily using the L1 norm can achieve the sparse representation of parameters, leading to feature selection. In this study, a feature selection method based on partial least squares is proposed. In the new method, exploiting partial least squares allows extraction of the latent variables required for performing multivariable linear regression, and this method applies the L1 regular term constraint to the sum of the absolute values of the regression coefficients. This technique is then combined with the coordinate descent method to perform multiple iterations to select a better feature subset. Analyzing traditional Chinese medicine data and University of California, Irvine (UCI), datasets with the model, the experimental results show that the feature selection method based on partial least squares exhibits preferable adaptability for traditional Chinese medicine data and UCI datasets.


Author(s):  
Ilangovan Sangaiya ◽  
A. Vincent Antony Kumar

In data mining, people require feature selection to select relevant features and to remove unimportant irrelevant features from a original data set based on some evolution criteria. Filter and wrapper are the two methods used but here the authors have proposed a hybrid feature selection method to take advantage of both methods. The proposed method uses symmetrical uncertainty and genetic algorithms for selecting the optimal feature subset. This has been done so as to improve processing time by reducing the dimension of the data set without compromising the classification accuracy. This proposed hybrid algorithm is much faster and scales well to the data set in terms of selected features, classification accuracy and running time than most existing algorithms.


2020 ◽  
Vol 4 (1) ◽  
pp. 29
Author(s):  
Sasan Sarbast Abdulkhaliq ◽  
Aso Mohammad Darwesh

Nowadays, people from every part of the world use social media and social networks to express their feelings toward different topics and aspects. One of the trendiest social media is Twitter, which is a microblogging website that provides a platform for its users to share their views and feelings about products, services, events, etc., in public. Which makes Twitter one of the most valuable sources for collecting and analyzing data by researchers and developers to reveal people sentiment about different topics and services, such as products of commercial companies, services, well-known people such as politicians and athletes, through classifying those sentiments into positive and negative. Classification of people sentiment could be automated through using machine learning algorithms and could be enhanced through using appropriate feature selection methods. We collected most recent tweets about (Amazon, Trump, Chelsea FC, CR7) using Twitter-Application Programming Interface and assigned sentiment score using lexicon rule-based approach, then proposed a machine learning model to improve classification accuracy through using hybrid feature selection method, namely, filter-based feature selection method Chi-square (Chi-2) plus wrapper-based binary coordinate ascent (Chi-2 + BCA) to select optimal subset of features from term frequency-inverse document frequency (TF-IDF) generated features for classification through support vector machine (SVM), and Bag of words generated features for logistic regression (LR) classifiers using different n-gram ranges. After comparing the hybrid (Chi-2+BCA) method with (Chi-2) selected features, and also with the classifiers without feature subset selection, results show that the hybrid feature selection method increases classification accuracy in all cases. The maximum attained accuracy with LR is 86.55% using (1 + 2 + 3-g) range, with SVM is 85.575% using the unigram range, both in the CR7 dataset.


2019 ◽  
Vol 21 (9) ◽  
pp. 631-645 ◽  
Author(s):  
Saeed Ahmed ◽  
Muhammad Kabir ◽  
Zakir Ali ◽  
Muhammad Arif ◽  
Farman Ali ◽  
...  

Aim and Objective: Cancer is a dangerous disease worldwide, caused by somatic mutations in the genome. Diagnosis of this deadly disease at an early stage is exceptionally new clinical application of microarray data. In DNA microarray technology, gene expression data have a high dimension with small sample size. Therefore, the development of efficient and robust feature selection methods is indispensable that identify a small set of genes to achieve better classification performance. Materials and Methods: In this study, we developed a hybrid feature selection method that integrates correlation-based feature selection (CFS) and Multi-Objective Evolutionary Algorithm (MOEA) approaches which select the highly informative genes. The hybrid model with Redial base function neural network (RBFNN) classifier has been evaluated on 11 benchmark gene expression datasets by employing a 10-fold cross-validation test. Results: The experimental results are compared with seven conventional-based feature selection and other methods in the literature, which shows that our approach owned the obvious merits in the aspect of classification accuracy ratio and some genes selected by extensive comparing with other methods. Conclusion: Our proposed CFS-MOEA algorithm attained up to 100% classification accuracy for six out of eleven datasets with a minimal sized predictive gene subset.


2021 ◽  
Vol 25 (1) ◽  
pp. 21-34
Author(s):  
Rafael B. Pereira ◽  
Alexandre Plastino ◽  
Bianca Zadrozny ◽  
Luiz H.C. Merschmann

In many important application domains, such as text categorization, biomolecular analysis, scene or video classification and medical diagnosis, instances are naturally associated with more than one class label, giving rise to multi-label classification problems. This has led, in recent years, to a substantial amount of research in multi-label classification. More specifically, feature selection methods have been developed to allow the identification of relevant and informative features for multi-label classification. This work presents a new feature selection method based on the lazy feature selection paradigm and specific for the multi-label context. Experimental results show that the proposed technique is competitive when compared to multi-label feature selection techniques currently used in the literature, and is clearly more scalable, in a scenario where there is an increasing amount of data.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


Sign in / Sign up

Export Citation Format

Share Document