One-Bit Hard Combination Decision Scheme for Cooperative Spectrum Sensing in Cognitive Radio

Author(s):  
Md. Shamim Hossain ◽  
Md. Ibrahim Abdullah ◽  
Mohammad Alamgir Hossain

<p>In this paper, the performance of 1-bit hard combination decision scheme for cooperative spectrum sensing in Cognitive Radio has been studied to maximize the probability of primary user detection. Energy detector model is used to observe the presence of primary user signal. Simulation result shows that the probability of missed detection is decreasing for both conventional and 1-bit hard combination OR rule with increasing the probability of false alarm correspondingly. It also has demonstrated that 1-bit hard combination decision scheme exhibits comparable performance with the conventional one-bit scheme and thus achieves a good tradeoff between performance and complexity.</p>

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Nandita Lavanis ◽  
Devendra Jalihal

A cognitive radio network (CRN) with a cooperative spectrum sensing scheme is considered. This CRN has a primary user and multiple secondary users, some of which are malicious secondary users (MSUs). Energy detection at each SU is performed using a p-norm detector with p≥2, where p=2 corresponds to the standard energy detector. The MSUs are capable of perpetrating spectrum sensing data falsification (SSDF) attacks. At the fusion center (FC), an algorithm is used to suppress these MSUs which could be either an adaptive weighing algorithm or one of the following: Tietjen-Moore (TM) test or Peirce’s criterion. This is followed by computation of a test statistic (TS) which is a random variable. In this paper, we assume TS to have either a Gamma or a Gaussian distribution and calculate the threshold accordingly. We provide closed-form expressions of probability of false alarm and probability of miss-detection under both assumptions. We show that Gaussian assumption of TS is more suited in presence of an SSDF attack when compared with the Gamma assumption. We also compare the detection performance for various values of p and show that p=3 along with the Gaussian assumption is the best amongst all the cases considered.


2018 ◽  
Vol 14 (09) ◽  
pp. 190 ◽  
Author(s):  
Shewangi Kochhar ◽  
Roopali Garg

<p>Cognitive Radio has been skillful technology to improve the spectrum sensing as it enables Cognitive Radio to find Primary User (PU) and let secondary User (SU) to utilize the spectrum holes. However detection of PU leads to longer sensing time and interference. Spectrum sensing is done in specific “time frame” and it is further divided into Sensing time and transmission time. Higher the sensing time better will be detection and lesser will be the probability of false alarm. So optimization technique is highly required to address the issue of trade-off between sensing time and throughput. This paper proposed an application of Genetic Algorithm technique for spectrum sensing in cognitive radio. Here results shows that ROC curve of GA is better than PSO in terms of normalized throughput and sensing time. The parameters that are evaluated are throughput, probability of false alarm, sensing time, cost and iteration.</p>


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 129
Author(s):  
Mingdong Xu ◽  
Zhendong Yin ◽  
Yanlong Zhao ◽  
Zhilu Wu

cognitive radio, as a key technology to improve the utilization of radio spectrum, acquired much attention. Moreover, spectrum sensing has an irreplaceable position in the field of cognitive radio and was widely studied. The convolutional neural networks (CNNs) and the gate recurrent unit (GRU) are complementary in their modelling capabilities. In this paper, we introduce a CNN-GRU network to obtain the local information for single-node spectrum sensing, in which CNN is used to extract spatial feature and GRU is used to extract the temporal feature. Then, the combination network receives the features extracted by the CNN-GRU network to achieve multifeatures combination and obtains the final cooperation result. The cooperative spectrum sensing scheme based on Multifeatures Combination Network enhances the sensing reliability by fusing the local information from different sensing nodes. To accommodate the detection of multiple types of signals, we generated 8 kinds of modulation types to train the model. Theoretical analysis and simulation results show that the cooperative spectrum sensing algorithm proposed in this paper improved detection performance with no prior knowledge about the information of primary user or channel state. Our proposed method achieved competitive performance under the condition of large dynamic signal-to-noise ratio.


2020 ◽  
Author(s):  
Rahil Sarikhani ◽  
Farshid Keynia

Abstract Cognitive Radio (CR) network was introduced as a promising approach in utilizing spectrum holes. Spectrum sensing is the first stage of this utilization which could be improved using cooperation, namely Cooperative Spectrum Sensing (CSS), where some Secondary Users (SUs) collaborate to detect the existence of the Primary User (PU). In this paper, to improve the accuracy of detection Deep Learning (DL) is used. In order to make it more practical, Recurrent Neural Network (RNN) is used since there are some memory in the channel and the state of the PUs in the network. Hence, the proposed RNN is compared with the Convolutional Neural Network (CNN), and it represents useful advantages to the contrast one, which is demonstrated by simulation.


2020 ◽  
Vol 12 (4) ◽  
pp. 575-583
Author(s):  
V. Sharma ◽  
S. Joshi

Cognitive Radio is a boon to efficient utilization of spectrum to meet the demand of next generation. Spectrum Sensing (SS) is an active research area, essential to meet the requirement of efficient spectrum utilization as it detects the vacant bands. This paper develops a Hybrid Blind Detection (HBD) technique for cooperative spectrum sensing which combines the Energy Detector (ED) and the Anti-Eigen Value Detection (AVD) techniques together to enhance the detection accuracy of a cognitive radio. Collaboration among the cognitive users is achieved to reduce the error and hard fusion based detection is implemented to detect the existence of primary user. The detection accuracy of the design is evaluated with respect to detection probabilities and the results are examined for improvements with the traditional two stage detection techniques. Fusion rules for the cooperative environment are implemented and compared to detect majority rule suitable for the proposed design.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2522 ◽  
Author(s):  
Yin Mi ◽  
Guangyue Lu ◽  
Yuxin Li ◽  
Zhiqiang Bao

Spectrum sensing (SS) is an essential part of cognitive radio (CR) technology, and cooperative spectrum sensing (CSS) could efficiently improve the detection performance in environments with fading and shadowing effects, solving hidden terminal problems. Hard and Soft decision detection are usually employed at the fusion center (FC) to detect the presence or absence of the primary user (PU). However, soft decision detection achieves better sensing performance than hard decision detection at the expense of the local transmission band. In this paper, we propose a tradeoff scheme between the sensing performance and band cost. The sensing strategy is designed based on three modules. Firstly, a local detection module is used to detect the PU signal by energy detection (ED) and send decision results in terms of 1-bit or 2-bit information. Secondly, and most importantly, the FC estimates the received decision data through a data reconstruction module based on the statistical distribution such that the extra thresholds are not needed. Finally, a global decision module is in charge of fusing the estimated data and making a final decision. The results from a simulation show that the detection performance of the proposed scheme outperforms that of other algorithms. Moreover, savings on the transmission band cost can be made compared with soft decision detection.


Sign in / Sign up

Export Citation Format

Share Document