scholarly journals Parameter estimation of DC motor through whale optimization algorithm

Author(s):  
Byamakesh Nayak ◽  
Sangeeta Sahu

This article estimates the unknown dc motor parameters by adapting the adaptive model with the reference model created by experimental data onto armature current and speed response from separately excited dc motor .The field flux dynamics, which is usually ignored, is included to model the dynamics of the motor. The block diagram including the flux dynamics and model parameters is considered as the adaptive model. The integral time square error between the instant experimental data and the corresponding adaptive model data is taken as cost function. The Whale optimization algorithm is used to minimize the cost function. Additionally, to improve the performances of optimization algorithm and for accurate result, the experimental data is divided into three intervals which form the three inequality constraints. A fixed penalty value is added to the cost function for violating these constraints. The effectiveness of estimation with two different methods is validated by convergence curve.

Author(s):  
Byamakesh Nayak ◽  
Sangeeta Sahu ◽  
Tanmoy Roy Choudhury

<p>This paper explains an adaptive method for estimation of unknown parameters of transfer function model of any system for finding the parameters. The transfer function of the model with unknown model parameters is considered as the adaptive model whose values are adapted with the experimental data. The minimization of error between the experimental data and the output of the adaptive model have been realised by choosing objective function based on different error criterions. Nelder-Mead optimisation Method is used for adaption algorithm. To prove the method robustness and for students learning, the simple system of separately excited dc motor is considered in this paper. The experimental data of speed response and corresponding current response are taken and transfer function parameters of  dc motors are adapted based on Nelder-Mead optimisation to match with the experimental data. The effectiveness of estimated parameters with different objective functions are compared and validated with machine specification parameters.</p>


2021 ◽  
Vol 56 (1) ◽  
Author(s):  
Mohamed H. Ali ◽  
Loai S. Nasrat ◽  
Hanafy M. Ismail

Ceramic materials are commonly used as outdoor insulators for high-voltage power transmission lines. Presently, these ceramic insulators are replaced by composite polymeric insulators with polyester, especially in rainy areas. Unlike ceramic materials, polymer materials have a shorter life, so fillers are used to improve their physical and chemical properties. This paper aims to improve the flashover voltage performance of polyester loaded with Alumina Trihydrate filler in wet weather condition. Due to the high cost of raw materials (polyester and Alumina Trihydrate filler), the Whale Optimization Algorithm model was used to predict the best concentration of Alumina Trihydrate filler to give the best value of flashover voltage. The model is based on experimental data of flashover voltage measurements. A positive correlation of the calculations from the Whale Optimization Algorithm model with experimental data has been demonstrated. The results showed that the flashover voltage performance of polyester is increased with the increase of Alumina Trihydrate filler concentration. Also, the optimum concentration of Alumina Trihydrate filler and flashover values predicted by the MATLAB Whale Optimization Algorithm are very accurate.


This work applies whale optimization algorithm for emission constrained economic dispatch of hydrothermal units including wind power. As the wind power has a characteristic of cleanliness and is renewable, this is convincing to include this for better operation of electric power system keeping in view both economic and environmental aspects. Hydrothermal scheduling integrated with wind power establishes a multi-objective problem that becomes economic emission hydro-thermal-wind scheduling problem while taking into consideration the cost due to wind uncertainty. Whale optimization algorithm is proposed to solve this emission constrained economic dispatch problem with competing objectives. This algorithm is recently developed and gives the best solution among other nature inspired algorithms. The objectives minimum generations as well as emission cost, both are optimized together including different constraints. A daily scheduling of all the three types of systems - hydro, thermal and wind is considered to evaluate the competency of this optimization technique to get a solution for this multi-objective problem. The experiments are carried out on two systems for determining the effectiveness of the suggested method. Besides, results found using the whale optimization technique have been compared with the results obtained from other evolutionary methods. From the comparison, it is experimentally justified that the whale optimization works faster and the cost of generation as well as cost of emission are lower than the other approaches.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yong-ke Pan ◽  
Ke-wen Xia ◽  
Wen-jia Niu ◽  
Zi-ping He

In many fields, such as oil logging, it is expensive to obtain labeled data, and a large amount of inexpensive unlabeled data are not used. Therefore, it is necessary to use semisupervised learning to obtain accurate classification with limited labeled data and many unlabeled data. The semisupervised support vector machine (S3VM) is the most useful method in semisupervised learning. Nevertheless, S3VM model performance will degrade when the sample number of categories is not even or have lots of unlabeled samples. Thus, a new semisupervised SVM by hybrid whale optimization algorithm (HWOA-S3VM) is proposed in this paper. Firstly, a tradeoff control parameter is added in S3VM to deal with an uneven sample of category which can cause S3VM to degrade. Then, a hybrid whale optimization algorithm (HWOA) is used to optimize the model parameters of S3VM to increase the classification accuracy. For HWOA improvement, an opposition-based cubic mapping is used to initialize the WOA population to improve the convergence speed, and the catfish effect is used to help WOA jump out of the local optimum and obtain the global optimization ability. In the experiments, firstly, the HWOA is tested by 12 classic benchmark functions of CEC2005 and four functions of CEC2014 compared with the other five algorithms. Then, six UCI datasets are used to test the performance of HWOA-S3VM and compared with the other four algorithms. Finally, we applied HWOA-S3VM to perform oil layer recognition of three oil well datasets. These experimental results show that (1) HWOA has a higher convergence speed and better global searchability than other algorithms. (2) HWOA-S3VM model has higher classification accuracy on UCI datasets than other algorithms when combined, labeled, and unlabeled data are used as the training dataset. (3) The recognition accuracy and speed of the HWOA-S3VM model are superior to the other four algorithms when applied in oil layer recognition.


Author(s):  
Nitin Chouhan ◽  
Uma Rathore Bhatt ◽  
Raksha Upadhyay

: Fiber Wireless Access Network is the blend of passive optical network and wireless access network. This network provides higher capacity, better flexibility, more stability and improved reliability to the users at lower cost. Network component (such as Optical Network Unit (ONU)) placement is one of the major research issues which affects the network design, performance and cost. Considering all these concerns, we implement customized Whale Optimization Algorithm (WOA) for ONU placement. Initially whale optimization algorithm is applied to get optimized position of ONUs, which is followed by reduction of number of ONUs in the network. Reduction of ONUs is done such that with fewer number of ONUs all routers present in the network can communicate. In order to ensure the performance of the network we compute the network parameters such as Packet Delivery Ratio (PDR), Total Time for Delivering the Packets in the Network (TTDPN) and percentage reduction in power consumption for the proposed algorithm. The performance of the proposed work is compared with existing algorithms (deterministic and centrally placed ONUs with predefined hops) and has been analyzed through extensive simulation. The result shows that the proposed algorithm is superior to the other algorithms in terms of minimum required ONUs and reduced power consumption in the network with almost same packet delivery ratio and total time for delivering the packets in the network. Therefore, present work is suitable for developing cost-effective FiWi network with maintained network performance.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2628
Author(s):  
Mengxing Huang ◽  
Qianhao Zhai ◽  
Yinjie Chen ◽  
Siling Feng ◽  
Feng Shu

Computation offloading is one of the most important problems in edge computing. Devices can transmit computation tasks to servers to be executed through computation offloading. However, not all the computation tasks can be offloaded to servers with the limitation of network conditions. Therefore, it is very important to decide quickly how many tasks should be executed on servers and how many should be executed locally. Only computation tasks that are properly offloaded can improve the Quality of Service (QoS). Some existing methods only focus on a single objection, and of the others some have high computational complexity. There still have no method that could balance the targets and complexity for universal application. In this study, a Multi-Objective Whale Optimization Algorithm (MOWOA) based on time and energy consumption is proposed to solve the optimal offloading mechanism of computation offloading in mobile edge computing. It is the first time that MOWOA has been applied in this area. For improving the quality of the solution set, crowding degrees are introduced and all solutions are sorted by crowding degrees. Additionally, an improved MOWOA (MOWOA2) by using the gravity reference point method is proposed to obtain better diversity of the solution set. Compared with some typical approaches, such as the Grid-Based Evolutionary Algorithm (GrEA), Cluster-Gradient-based Artificial Immune System Algorithm (CGbAIS), Non-dominated Sorting Genetic Algorithm III (NSGA-III), etc., the MOWOA2 performs better in terms of the quality of the final solutions.


Sign in / Sign up

Export Citation Format

Share Document