scholarly journals A smart cascaded H-bridge multilevel inverter with an optimized modulation techniques increasing the quality and reducing harmonics

Author(s):  
Youssef Babkrani ◽  
Ahmed Naddami ◽  
Mohamed Hilal

<span>The world community relied heavily on fossils energies but just after the big oil crisis the use of renewable energy has greatly increased and has become the main interest of many countries for its many advantages such as: minimal impact on the environment, renewable generators requiring less maintenance than traditional ones and it has also a great impact on economy. It is easy to get charmed by the advantages of using the renewable resources but we must also be aware of their disadvantages. One of the major disadvantages is that the renewable energy resources are intermittent and thus they have led scientists to develop new semiconductor power converters among which are the multilevel inverter. In this paper a new smart multi-level inverter is proposed so as to increase its levels according to the user’s needs and also to avoid the impact of shades and the intermittence on photovoltaic panels. We also propose a modification on the multicarrier aiming to reduce the harmonics. This modification introduces a sinusoidal wave compared with trapezoidal multi-carrier to generate the pulses. In order to obtain the line voltages and the total harmonic distortions (THD) MATLAB/SIMULINK is used.</span>

2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Alexandros I. Nikolaidis ◽  
Francisco M. Gonzalez-Longatt ◽  
C. A. Charalambous

The continuous increase on the penetration levels of Renewable Energy Sources (RESs) in power systems has led to radical changes on the design, operation, and control of the electrical network. This paper investigates the influence of these changes on the operation of a transmission network by developing a set of indices, spanning from power losses to GHG emissions reduction. These indices are attempting to quantify any impacts therefore providing a tool for assessing the RES penetration in transmission networks, mainly for isolated systems. These individual indices are assigned an analogous weight and are mingled to provide a single multiobjective index that performs a final evaluation. These indices are used to evaluate the impact of the integration of RES into the classic WSCC 3-machine, 9-bus transmission network.


Author(s):  
Praveen Cheekatamarla ◽  
Vishaldeep Sharma ◽  
Bo Shen

Abstract Economic and population growth is leading to increased energy demand across all sectors – buildings, transportation, and industry. Adoption of new energy consumers such as electric vehicles could further increase this growth. Sensible utilization of clean renewable energy resources is necessary to sustain this growth. Thermal needs in a building pose a significant challenge to the energy infrastructure. Supporting the current and future building thermal energy needs to offset the total electric demand while lowering the carbon footprint and enhancing the grid flexibility is presented in this study. Performance assessment of heat pumps, renewable energy, non-fossil fuel-based cogeneration systems, and their hybrid configurations was conducted. The impact of design configuration, coefficient of performance (COP), electric grid's primary energy efficiency on the key attributes of total carbon footprint, life cycle costs, operational energy savings, and site-specific primary energy efficiency are analyzed and discussed in detail.


2019 ◽  
Vol 8 (4) ◽  
pp. 75
Author(s):  
Rita Bužinskienė

Paper is characterized by scientific novelty as it involves a very scarce research problem in Lithuanian‘s energy sector, assessing the impact of renewable energy resources on the energy economy. Renewable energy sources have a multiplier effect in spurring the economy and the development of not only the energy sector but also all the supporting activities related to such industry. The impact of the development of renewable energy is one of the factors that develop the quality of technology innovation development. This study includes the impact of renewable energy on the energy economy, using multiple linear regression models. The results of the study have shown that renewable energy resources: wind, sun, water, geothermal and biomass can not always be used together because they compete with each other and therefore reduce the efficiency of the energy economy. In this context, three combinations of renewable energy resources have been developed, which have been adapted to assess the impact of the energy economy on energy productivity and energy intensity. It has been found that the combination of resources of the second model (M2) RE is significant for the efficiency of the energy economy.Keywords: Renewable energy resources; Energy economy; Impact of efficiency


Author(s):  
Hemalatha Javvaji ◽  
Basavaraja Banakara

This paper proposes a Hybridized Symmetric Cascaded Multilevel Inverter for voltage levels ranging from 5 levels to 17 levels. The proposed Multi Level Inverter (MLI) topology is built using a modified H-bridge inverter that results in an increased output voltage levels with a smaller number of solid-state switches. This technique enhances the h-bridge configuration from three level to five level by means of a bi-directional switch at source. Gating pulses of hybridized symmetric MLI are generated through staircase modulation. The operation and performance of the proposed topology is tested for different output voltage levels, simulation results prove that the proposed technique results in less THD at all levels with lesser power consumption and are easily applicable for renewable energy applications.


Author(s):  
David T. Gallaspy ◽  
Rodney E. Sears

The economics and potential offsets of imported energy are analyzed. Benefits to the carbon footprint of the region are estimated. A commercial structure for the operation of such a co-operative bio-refinery is proposed. Rural and agricultural regions typically have ample production of biomass in various forms, including wood from forestry, agricultural wastes and range grasses. Certain regions also have renewable energy resources such as wind power, solar insolation and hydraulic power. Rural regions are typically seen to have a potential for renewable energy that greatly exceeds energy consumption due to human activity in the region. However, energy consumption in such areas is highly biased toward non-renewable sources, just as in more urbanized regions. This is due to the standardization of virtually all manufactured energy conversion equipment to use available processed energy sources such as electricity and natural gas and refined fuels such as diesel and gasoline. In addition, agricultural activities are highly dependent on energy-intensive petrochemicals such as fertilizers, pesticides, and herbicides. Energy sustainability and self-sufficiency can therefore be increased by conversion of local renewable resources into appropriate form values for existing energy conversion equipment. Solar power, wind power and hydropower are fully commercial, although more economic in some regions than in others. The production of electricity from biomass fuels via conventional steam cycles is well established, if challenging from an economic standpoint. However, conversion of biomass and other renewable resources into fuels that can be used in standard equipment, and chemicals and fertilizers for local agricultural production is both technically and economically challenging. The authors evaluate the potential for a typical rural region to offset imports of conventional non-renewable energy such as electricity, engine fuels, and fertilizers via the establishment of a regional bio-refinery financed and operated as a local co-operative. The renewable resources of the typical rural region are assumed to facilitate the analysis. The appropriate technologies, scope, product slate, production rates, capital costs and operating costs for the bio-refinery are defined.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4856
Author(s):  
Joseph Oyekale ◽  
Mario Petrollese ◽  
Vittorio Tola ◽  
Giorgio Cau

This study is aimed at a succinct review of practical impacts of grid integration of renewable energy systems on effectiveness of power networks, as well as often employed state-of-the-art solution strategies. The renewable energy resources focused on include solar energy, wind energy, biomass energy and geothermal energy, as well as renewable hydrogen/fuel cells, which, although not classified purely as renewable resources, are a famous energy carrier vital for future energy sustainability. Although several world energy outlooks have suggested that the renewable resources available worldwide are sufficient to satisfy global energy needs in multiples of thousands, the different challenges often associated with practical exploitation have made this assertion an illusion to date. Thus, more research efforts are required to synthesize the nature of these challenges as well as viable solution strategies, hence, the need for this review study. First, brief overviews are provided for each of the studied renewable energy sources. Next, challenges and solution strategies associated with each of them at generation phase are discussed, with reference to power grid integration. Thereafter, challenges and common solution strategies at the grid/electrical interface are discussed for each of the renewable resources. Finally, expert opinions are provided, comprising a number of aphorisms deducible from the review study, which reveal knowledge gaps in the field and potential roadmap for future research. In particular, these opinions include the essential roles that renewable hydrogen will play in future energy systems; the need for multi-sectoral coupling, specifically by promoting electric vehicle usage and integration with renewable-based power grids; the need for cheaper energy storage devices, attainable possibly by using abandoned electric vehicle batteries for electrical storage, and by further development of advanced thermal energy storage systems (overviews of state-of-the-art thermal and electrochemical energy storage are also provided); amongst others.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5482
Author(s):  
Shabir Ahmad ◽  
Israr Ullah ◽  
Faisal Jamil ◽  
DoHyeun Kim

Renewable energy sources are environmentally friendly and cost-efficient. However, the problem with these renewable resources is their heavy reliance on weather conditions. Thus, at times, these solutions are not guaranteed to meet the required demand all the time. For this, hybrid microgrids are introduced, which have a combination of both renewable energy sources and non-renewable energy resources. In this paper, a cost-efficient optimization algorithm is proposed that minimizes the use of non-renewable energy sources. It maximizes the use of renewable energy resources by meeting the demand for utility grids. Real data based on the load and demand of the utility grids in Italy is used, and a system that determines the optimal sizing of the microgrid and a daily plan is introduced to optimize the renewable resources operations. As part of the proposal, the objective function for the operation and planning of the microgrid in such a way to minimize cost is formulated. Moreover, a variant of the PSO algorithm named recurrent PSO is implemented. The recurrent PSO algorithm solves the proposed optimization objective function by minimizing the cost for the installation and working of the microgrid. Afterwards, the energy management system algorithm lays out a plan for the daily operation of the microgrid. The performance of the system is evaluated using different state-of-the-art optimization methods. The proposed work can help minimize the use of diesel generators, which not only saves financial resources but also contributes toward a green environment.


Sign in / Sign up

Export Citation Format

Share Document