scholarly journals Direct control of active and reactive power for a grid-connected single-phase photovoltaic inverter

Author(s):  
Eyad Radwan ◽  
Mutasim Nour ◽  
Ali Baniyounes ◽  
Khalid S. Al Olimat ◽  
Emad Awada

This paper presents a single-phase grid-connected photovoltaic system with direct control of active and reactive power through a power management system of a Photovoltaic inverter. The proposed control algorithm is designed to allow maximum utilization of the inverter’s available KVA capacity while maintaining grid power factor and current total harmonic distortion (THD) requirements within the grid standards. To reduce the complexity and improve the efficiency of the system, two independent PI controllers are implemented to control single-phase unipolar PWM voltage source inverter. One controller is used to control the power angle, and hence the active power flow, while the other controller is used to control the reactive power, and consequently the power factor by adjusting the voltage modulation index of the inverter. The proposed system is modelled and simulated using MATLAB/Simulink. The PV inverter has been examined while being simultaneously connected to grid and local load. Results obtained showed the ability of the PV inverter to manage the active and reactive power flow at, and below rated levels of solar irradiances; resulting in an increased inverter utilization factor, and enhanced power quality. The proposed system, was capable of operating at power factors in the range of 0.9 lead or lag for reactive power compensation purposes and delivered its power at a wide range of solar irradiance variations.

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4796 ◽  
Author(s):  
Eyad Radwan ◽  
Mutasim Nour ◽  
Emad Awada ◽  
Ali Baniyounes

This paper presents a control scheme for a photovoltaic (PV) system that uses a single-phase grid-connected inverter with low-voltage ride-through (LVRT) capability. In this scheme, two PI regulators are used to adjust the power angle and voltage modulation index of the inverter; therefore, controlling the inverter’s active and reactive output power, respectively. A fuzzy logic controller (FLC) is also implemented to manage the inverter’s operation during the LVRT operation. The FLC adjusts (or de-rates) the inverter’s reference active and reactive power commands based on the grid voltage sag and the power available from the PV system. Therefore, the inverter operation has been divided into two modes: (i) Maximum power point tracking (MPPT) during the normal operating conditions of the grid, and (ii) LVRT support when the grid is operating under faulty conditions. In the LVRT mode, the de-rating of the inverter active output power allows for injection of some reactive power, hence providing voltage support to the grid and enhancing the utilization factor of the inverter’s capacity. The proposed system was modelled and simulated using MATLAB Simulink. The simulation results showed good system performance in response to changes in reference power command, and in adjusting the amount of active and reactive power injected into the grid.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1061
Author(s):  
Iván Andrade ◽  
Rubén Pena ◽  
Ramón Blasco-Gimenez ◽  
Javier Riedemann ◽  
Werner Jara ◽  
...  

The development of distributed generation, mainly based on renewable energies, requires the design of control strategies to allow the regulation of electrical variables, such as power, voltage (V), and frequency (f), and the coordination of multiple generation units in microgrids or islanded systems. This paper presents a strategy to control the active and reactive power flow in the Point of Common Connection (PCC) of a renewable generation system operating in islanded mode. Voltage Source Converters (VSCs) are connected between individual generation units and the PCC to control the voltage and frequency. The voltage and frequency reference values are obtained from the P–V and Q–f droop characteristics curves, where P and Q are the active and reactive power supplied to the load, respectively. Proportional–Integral (PI) controllers process the voltage and frequency errors and set the reference currents (in the dq frame) to be imposed by each VSC. Simulation results considering high-power solar and wind generation systems are presented to validate the proposed control strategy.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Charles Akinropo ◽  
Gbenga A Olarinoye

The effect of outages in transmission lines and generator units can be predictable for stable and reliable operation of power system through contingency assessment. Hence, contingency assessment is an important task for stable and effective operation of power system. In this paper, a method of placement of interline power flow controller (IPFC) based on the probability of severity has been proposed. Contingency ranking of lines has been done using Composite Severity Index which is a probabilistic based strategy for the placement of IPFC. IPFC is placed on the line with highest probability of severity during the occurrence of different outages. Thereafter, the size of the IPFC was optimized using cuckoo search algorithm. The proposed methodology has been applied on the IEEE 14 bus system data and results presented. The system overall CSI, active and reactive power were reduced by 7.31%, 10.17% and 14.46% respectively. The results show that optimal placement of IPFC effectively reduces line congestion, improves voltage stability and reduces the active and reactive power loss of the system.Keyword- Power Flow, line utilization factor, severity index, Contingency Management


Sign in / Sign up

Export Citation Format

Share Document