scholarly journals Comparison of electronic load using linear regulator and boost converter

Author(s):  
Razman Ayop ◽  
Shahrin Md Ayob ◽  
Chee Wei Tan ◽  
Tole Sutikno ◽  
Mohd Junaidi Abdul Aziz

<span lang="EN-US">Direct current (DC) electronic load is a useful equipment for testing the electrical system. It can emulate various load at a high rating. The electronic load requires a power converter to operate and a linear regulator is a common option. Nonetheless, it is hard to control due to the temperature variation. This paper proposed a DC electronic load using the boost converter. The proposed electronic load operates in the continuous current mode and control using the integral controller. The electronic load using the boost converter is compared with the electronic load using the linear regulator. The results show that the boost converter able to operate as an electronic load with an error lower than 0.5% and response time lower than 13 ms.</span>

2020 ◽  
Vol 10 (4) ◽  
pp. 39
Author(s):  
Maziar Rastmanesh ◽  
Ezz El-Masry ◽  
Kamal El-Sankary

Photo-voltaic (PV) power harvest can have decent efficiency when dealing with high power. When operating with a DC–DC boost converter during the low-power harvest, its efficiency and output voltage are degraded due to excessive losses in the converter components. The objective of this paper is to present a systematic approach to designing an efficient low-power photo-voltaic harvesting topology with an improved efficiency and output voltage. The proposed topology uses a boost converter with and extra inductor in recycled and synchro-recycled techniques in continuous current mode (CCM). By exploiting the non-linearity of the PV cell, it reduces the power loss and using the current stored in the second inductor, it enhances the output voltage and output power simultaneously. Further, by utilizing the Metal Oxide Silicon Field Effect Transistor’s (MOSFET) body diode as a switch, it maintains a minimum hardware, and introduces a negligible impact on the reliability. The test results of the proposed boost converters show that it achieves a decent power and output voltage. Theoretical and experimental results of the proposed topologies with a tested prototype are presented along with a strategy to maximize power and voltage conversion efficiencies and output voltage.


Author(s):  
C. Anuradha ◽  
N. Chellammal ◽  
S. Vijayalakshmi ◽  
R. C. Ilambirai

<p>This paper proposes a non-isolated three port SEPIC converter for stand-alone photovoltaic applications. The proposed topology uses the Single Input Multi Output (SIMO) structure. This topology consists of a single photovoltaic source as input and it is a unidirectional power converter. Mathematical analysis for the proposed system is performed and simulations are carried out using MATLAB/Simulink. The design parameters of capacitors and inductors are calculated from small ripple analysis. The simulation analysis for the proposed open loop topology is verified using a real time hardware setup.The entire process is carried out in Continuous Current Mode (CCM) of operation. The experimental results for hardware are verified with simulations and compared.</p>


2016 ◽  
Vol 9 (4) ◽  
pp. 710-718 ◽  
Author(s):  
Federico Martin Ibanez ◽  
Jose Martin Echeverria ◽  
Daniel Astigarraga ◽  
Luis Fontan

In order to analyze the bifurcation and chaos of Superbuck converter in Continuous Current Mode (CCM), a new method of time-frequency diagram based on Wigner-Ville distribution is proposed. The method is used to analyze the variation of the energy component of the output voltage with frequency and time. It reveals that the Superbuck converter exhibits period-1 bifurcation, period-2 bifurcation, period-4 bifurcation and chaos under different reference current. The results of the time-frequency diagram are consistent with the results of the bifurcation diagram, time-domain diagram, phase diagram and Poincare section. It proves that the method can deeply understand the nature of bifurcation and chaos in Superbuck converter, and it provides a new way to analyze the nonlinear phenomena of DC-DC converter


Sign in / Sign up

Export Citation Format

Share Document