scholarly journals Series FACTS controllers in industrial low voltage electrical distribution networks for reducing fault current levels

Author(s):  
Vishnu Charan Thippana ◽  
Alivelu Manga Parimi ◽  
Chandram Karri

In this paper, series FACTS devices like Thyristor control series capacitor(TCSC)and Static synchronous series compensator (SSSC) with designed control logic used to reduce the fault current located in LV distribution network at the LV busbar. The electrical distribution network in small and medium scale industries such as steel plants, process and power plants is through low voltage switchgear (LVS) fed from motor control centre (MCC) switchgear through step down transformer of 11kV or 33kV /415V. The designed switchgear in the LV side for these utilities usually is at 50kA. However, the process loads are continuously increasing and sustained with additional feeders with the existing switchgear. Consequently, the fault current at the busbar of the switchgear increases which may require the replacement of entire switchgear to the new design fault current. However, upgrading the existing switchgear is not an economical solution to the industries. Alternatively reducing the fault current at the busbar is feasible. Controller design implemented for reducing the short circuit current with series FACTS devices. A study carried on 800 MW Thermal power plant Ash handling LVS in ETAP and Matlab. It is observed that the results are encouraging to use series FACTS devices effectively in the LVS.

Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 34 ◽  
Author(s):  
Shijie Cui ◽  
Peng Zeng ◽  
Chunhe Song ◽  
Zhongfeng Wang

With the decentralization of the electricity market and the plea for a carbon-neutral ecosystem, more and more distributed generation (DG) has been incorporated in the power distribution grid, which is then known as active distribution network (ADN). The addition of DGs causes numerous control and protection confronts to the traditional distribution network. For instance, two-way power flow, small fault current, persistent fluctuation of generation and demand, and uncertainty of renewable energy sources (RESs). These problems are more challenging when the distribution network hosts many converter-coupled DGs. Hence, the traditional protection schemes and relaying methods are inadequate to protect ADNs against short-circuit faults and disturbances. We propose a robust communication-assisted fault protection technique for safely operating ADNs with high penetration of converter-coupled DGs. The proposed technique is realizable by employing digital relays available in the recent market and it aims to protect low-voltage (LV) ADNs. It also includes secondary protection that can be enabled when the communication facility or protection equipment fails to operate. In addition, this study provides the detail configuration of the digital relay that enables the devised protection technique. Several enhancements are derived, as alternative technique for the traditional overcurrent protection approach, to detect small fault current and high-impedance fault (HIF). A number of simulations are performed with the complete model of a real ADN, in Shenyang, China, employing the PSCAD software platform. Various cases, fault types and locations are considered for verifying the efficacy of the devised technique and the enabling digital relay. The obtained simulation findings verify the proposed protection technique is effective and reliable in protecting ADNs against various fault types that can occur at different locations.


2013 ◽  
Vol 340 ◽  
pp. 819-823
Author(s):  
Yu Jun Zhang ◽  
Jing Li

The low-voltage distribution networks have some structural features, such as short supply line, more lines branch and influence of transition resistance of the short-circuit current. These characteristics seriously affect the development of fault location technology. The paper, based on the basis of the structural features about the low-voltage distribution networks, create the distribution networks of description matrix by knowledge of mathematical topology and use the distribution network fault location algorithm based on web-based structure matrix. By the algorithm, the area of fault judgment and the actual distribution network fault location are fully consistent. The new theory provides a new way of thinking for fault location in low-voltage distribution networks.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5516
Author(s):  
Filip Relić ◽  
Predrag Marić ◽  
Hrvoje Glavaš ◽  
Ivica Petrović

In the modern power system, Flexible Alternating Current Transmission System (FACTS) devices are widely used. An increased share of the distributed generation (DG) and the development of microgrids change the power flows in the existing distribution networks as well as a conventional power flow direction from the transmission to the distribution network level which may affect the overall stability aspects. The paper shows the FACTS devices’ implementation influence on the performance of the distribution network with integrated renewable energy sources (RES) observing the aspects of the oscillatory stability and the low-voltage motor starting. The FACTS devices, in particular the static var compensators (SVC), have been allocated according to a novel algorithm proposed in the paper. The algorithm uses an iterative process to determine an optimal location for implementation and rating power of SVC considering active power losses minimization, improvement of the voltage profile and maximizing return of investment (ROI) of FACTS devices. Novel constraints—transformer station construction constraint, SVC industrial nominal power value constraint and the constraint of distribution system operator (DSO) economic willingness to investment in the distribution network development are considered in the proposed algorithm. The analysis has been performed on 20 kV rural distribution network model in DIgSILENT PowerFactory software.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1753 ◽  
Author(s):  
Bing Han ◽  
Yonggang Li

The low voltage direct current (LVDC) distribution networks are connected with too many kinds of loads and sources, which makes them prone to failure. Due to the small damping value in the DC lines, the fault signal propagates so fast that the impact current with the wave front of millisecond and the transient voltage pose great challenges for fault detection. Even worse, some faults with small currents are difficult to detect and the communication is out of sync, resulting in protection misoperation. These problems have severely affected the new energy utilization. In view of this, a DC fault current limiter (FCL) composed of inductance, resistance, and power electronic switch was designed in this paper. The rising speed of fault current can be decreased by the series inductance and the peak value of the fault current can be limited by series impedance, thus in this way the running time can be gained for fault detection and protection. For distributed energy access, by deducing the short circuit fault characteristic expression of LVDC distribution network, the feasibility of FCL was verified. Based on the structure of the bridge-type alternating current (AC) current limiter, the structure and parameters of the DC FCL were determined according to the fault ride-through target. Then, a low voltage ride-through strategy based on DC FCL was proposed for the bipolar short-circuit fault of LVDC distribution network. Finally, MATLAB/Simulink simulation was used to verify the rationality of the proposed FCL and its ride-through strategy.


2013 ◽  
Vol 3 (4) ◽  
Author(s):  
Nedžad Hadžiefendić ◽  
Ivan Zarev ◽  
Nebojša Đenić ◽  
Marko Medić

This paper deals with the issue of the fire occurrence which is caused by low-voltage electrical installations (household distribution board) due to the absence of protective devices (fuses and surge arresters) on the pillars of the electrical distribution network. The example of calculation of fault currents is given, for the fault current on the basis of which it is proved the necessity of installing of pole mounted fuse on the latest pillar of low-voltage electrical distribution network. In the paper there are examples of fire expertise for fires caused by non-installation of pole mounted fuses and surge arresters are presented. Key words:atmospheric discharges, over-voltages, fault current, fire, pole mounted fuse, surge arrester


2020 ◽  
Vol 15 ◽  

In this article, Interline power flow controller (IPFC) has been recommended to limit the short circuit current (SCC) in low voltage (LV) electrical distribution system. Industrial loads are increasing due to various reasons in the distribution system. It leads to the power requirement at the distribution system level. Therefore, there is a scope for increase in the fault current. Due to the increased fault current, the protection of switchgear is vital. A simple control strategy wth IPFC is proposed in the distribution system to limit the fault current. Low voltage distribution system i.e 800 MW thermal power plant water system LV distribution system is considered for demonstrating the effectiveness of the IPFC. Short circuit analysis is performed without and with the IPFC by applying ETAP and MATLAB (SIMULINK). The simulation results are compared. Further, the effect of different ratings of standard transformers is also analyzed. It is noticed that the control strategy with IPFC can limit the fault current.


Author(s):  
Xin Shen ◽  
Hongchun Shu ◽  
Min Cao ◽  
Nan Pan ◽  
Junbin Qian

In distribution networks with distributed power supplies, distributed power supplies can also be used as backup power sources to support the grid. If a distribution network contains multiple distributed power sources, the distribution network becomes a complex power grid with multiple power supplies. When a short-circuit fault occurs at a certain point on the power distribution network, the size, direction and duration of the short-circuit current are no longer single due to the existence of distributed power, and will vary with the location and capacity of the distributed power supply system. The change, in turn, affects the current in the grid, resulting in the generation and propagation of additional current. This power grid of power electronics will cause problems such as excessive standard mis-operation, abnormal heating of the converter and component burnout, and communication system failure. It is of great and practical significance to study the influence of distributed power in distributed power distribution networks.


2020 ◽  
Author(s):  
Clainer B. Donadel ◽  
Gilberto C. D. Sousa ◽  
Flávio M. Varejão

In the literature, there are several methodologies to estimate technical losses in electrical distribution networks. The range of techniques is broad, ranging from basic techniques (based on loss factor, for example) to sophisticated ones (based on artificial intelligence). These methodologies are important, because the costs of technical losses represent a huge part of the total operation costs of distribution network operators (DNOs). However, the presence of clandestine connections, common in developing countries, was not considered in the methodologies encountered in the literature. Clandestine connections occur when a consumer has made his/her connection without DNO permission. In these cases, the amount of energy consumed by a clandestine "consumer" is a nontechnical loss (and, therefore, should be correctly computed as nonbilled energy). Therefore, a new methodology is proposed to consider the presence of clandestine connections in energy loss estimation in distribution systems.


Author(s):  
Prof. Amruta Bijwar, Prof. Madhuri Zambre

Nowadays low voltage distribution network is considered as worldwide future generation distribution network. But the major concern is harmonics generation and steps taken to cancel those harmonics. In our proposed work, low voltage distribution network is designed with low voltage and harmonics are cancelled in our method. The combination of current control unit and voltage control unit will give extra reliable power solution to increase the required capacity of low voltage grids. The high voltage protection gears are used in worst environment for low voltage and low current distribution network test is preferable to assess a variety of operation uniqueness. Therefore, it has few restrictions in implementation of economic in addition to process methodologies. In our work a 48V direct current base up-scale low voltage distribution network test is urbanized to allow the copy and surveillance of a variety of phenomenon of direct current distribution networks. The proposed system provide stretchy pattern ability by introduce S-connectors and T-connectors module that will be proscribed distantly, and near real time monitor function through by means of a data acquisition system associated toward the nodes. Each connector be able to calculate Power, Voltage and current with up to 250 kHz frequency. To calculate power quality and to understand the performance of the distribution network, frequency analysis is required along with collected data.


Electrician ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 33
Author(s):  
Osea Zebua ◽  
Noer Soedjarwanto ◽  
Jemi Anggara

Intisari — Stabilitas tegangan telah menjadi perhatian yang penting dalam operasi jaringan distribusi tenaga listrik. Ketidakstabilan tegangan dapat menyebabkan kerusakan pada peralatan-peralatan listrik bila terjadi dalam waktu yang lama. Makalah ini bertujuan untuk merancang dan membuat peralatan deteksi stabilitas tegangan jangka panjang pada jaringan tegangan rendah. Sensor tegangan dan sensor arus digunakan untuk memperoleh data tegangan dan arus. Mikrokontroler Arduino digunakan untuk memproses perhitungan deteksi stabilitas tegangan jangka panjang dari data tegangan yang diperoleh dari sensor. Hasil deteksi kondisi stabilitas tegangan ditampilkan dengan indikator lampu led. Hasil pengujian pada jaringan distribusi tegangan rendah tiga fasa menunjukkan bahwa peralatan dapat mendeteksi gangguan stabilitas tegangan jangka panjang secara online dan dinamis.Kata kunci — Deteksi, stabilitas tegangan jangka panjang, jaringan distribusi tegangan rendah. Abstract — Voltage stability has become important concern in the operation of electric power distribution networks. Voltage instability can cause damage to electrical equipments if it occurs for a long time. This paper aims to design and build long-term voltage stability detection equipment on low-voltage network. Voltage sensors and current sensors are used to obtain voltage and current data. The Arduino microcontroller is used to process calculation of long-term voltage stability detection from data obtained from the sensors. The results of detection of voltage stability conditions are displayed with the LED indicators. Test result on three-phase low-voltage distribution network shows that equipment can detect long–term voltage stability disturbance online and dynamically.Keywords— Detection, long-term voltage stability, low-voltage distribution network.


Sign in / Sign up

Export Citation Format

Share Document