scholarly journals A single-stage full bridgeless boost half-bridge AC/DC converter with bidirectional switch

Author(s):  
Mohamad Affan Bin Mohd Noh ◽  
Mohd Rodhi Bin Sahid ◽  
Vinesh Thiruchelvam

This paper proposes an isolated full bridgeless single stage alternating current-direct current (AC-DC) converter. The proposed converter integrates the operation of a pure bridgeless power factor correction with input boost inductor cascaded with center-tap transformer and half bridge circuit. In addition, the bidirectional switch can be driven with single control signal which further simplifies the controller circuit. It is also proved that this converter reduces the total number of components compared to some conventional circuit and semi-bridgeless circuit topologies. The circuit operation of the proposed circuit is then confirmed with the small signal model, large signal model, circuit simulation and then verified experimentally. It is designed and tested at 115 Vac, 50 Hz of input supply, and 20 Vdc output voltage with maximum output power of 100 W. In addition, the crossover distortion at the input current is minimize at high input line frequency.

Author(s):  
Mohamad Affan Bin Mohd Noh ◽  
Mohd Rodhi Bin Sahid ◽  
Thang Ka Fei ◽  
Ravi Lakshmanan

A small-signal analysis of a single-stage bridgeless boost half-bridge alternating current/direct current (AC/DC) Converter with bidirectional switches is performed using circuit averaging method. The comprehensive approach to develop the small signal model from the steady state analysis is discussed. The small-signal model is then simulated with MATLAB Simulink. The small-signal model is verified through the comparison of the bode-plot obtained from MATLAB Simulink and the simulated large signal model in piecewise linear electrical circuit simulation (PLECS). The mathematical model obtain from the small-signal analysis is then used to determine the proportional gain K_p and integral gain K_i. In addition, the switch large-signal model is developed by considering the current and voltage waveforms during load transients and steady-state conditions.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3588
Author(s):  
Haojia Chen ◽  
Qiong Gao ◽  
Baoliang Qian ◽  
Lishan Zhao

Fundamentally different responses of a LiTaO 3 thin film detector are observed when it is subjected to short microwave pulses as the pulse intensity is altered over a wide range. We start from weak microwave pulses which lead to only trivial pyroelectric peak response. However, when the microwave pulses become intense, the normally expected pyroelectric signal seems to be suppressed and the sign of the voltage signal can even be completely changed. Analysis indicates that while the traditional pyroelectric model, which is a linear model and works fine for our data in the small regime, it does not work anymore in the large signal regime. Since the small-signal model is the key foundation of electromagnetic-wave sensors based on pyroelectric effects, such as pyroelectric infrared detecters, the observation in this work suggests that one should be cautious when using these devices in intense fields. In addition, the evolution of detector signal with respect to excitation strength suggests that the main polarisation process is changed in the large signal regime. This is of fundamental importance to the understanding on how crystalline solids interact with intense microwaves. Possible causes of the nonlinear behaviour is discussed.


2014 ◽  
Vol 6 (3-4) ◽  
pp. 243-251 ◽  
Author(s):  
Tom K. Johansen ◽  
Matthias Rudolph ◽  
Thomas Jensen ◽  
Tomas Kraemer ◽  
Nils Weimann ◽  
...  

In this paper, the small- and large-signal modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. The small-signal equivalent circuit parameters for TS-HBTs in two-terminal and three-terminal configurations are determined by employing a direct parameter extraction methodology dedicated to III–V based HBTs. It is shown that the modeling of measured S-parameters can be improved in the millimeter-wave frequency range by augmenting the small-signal model with a description of AC current crowding. The extracted elements of the small-signal model structure are employed as a starting point for the extraction of a large-signal model. The developed large-signal model for the TS-HBTs accurately predicts the DC over temperature and small-signal performance over bias as well as the large-signal performance at millimeter-wave frequencies.


2010 ◽  
Vol 40-41 ◽  
pp. 293-297
Author(s):  
Dian Li Hou ◽  
Qing Fan Zhang

By circuit averaging method, a small-signal model is derived from push-pull forward topology which works in Continuous Conduction Mode (CCM). Dynamic large-signal model, DC circuit model and small-signal model are derived. The effect of leakage inductance on push-pull forward topology is analyzed and simulated in detail.


Author(s):  
Amiza Rasmi

This paper presents the design of single-stage and two-stage medium power amplifiers (MPAs) using GaAs PHEMT technology for the wireless applications. The single-stage MPA was designed using 0.15 µm GaAs PHEMT technology to be operated at 3.5 GHz whereas the two-stage MPA was designed using 0.5 µm GaAs PHEMT technology to be operated at 5.8 GHz. The MPAs employ a simple RC feedback in order to linearize the stages as well as to improve the circuit stability and to control the gain. In addition, the load-pull technique was used in order to define the optimum load and maximum output power. Therefore, the performance of the proposed amplifier in this paper is discussed in terms of stability, gain, power-added efficiency (PAE), and output power. The simulated data of the proposed MPAs is then compared with the measured data of the fabricated MPAs.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 980
Author(s):  
Xia-Yida MaXueer ◽  
Yi-Ming He ◽  
Zun-Ren Lv ◽  
Zhong-Kai Zhang ◽  
Hong-Yu Chai ◽  
...  

Aiming to realize high-speed optical transmitters for isolator-free telecommunication systems, 1.3 μm p-modulation doped InGaAs/GaAs quantum dot (QD) lasers with a 400 μm long cavity have been reported. Compared with the un-doped QD laser as a reference, the p-doped QD laser emits at ground state, with an ultra-low threshold current and a high maximum output power. The p-doped QD laser also shows enhanced dynamic characteristics, with a 10 Gb/s large-signal direct modulation rate and a 7.8 GHz 3dB-bandwidth. In addition, the p-doped QD laser exhibits a strong coherent optical feedback resistance, which might be beyond −9 dB.


Sign in / Sign up

Export Citation Format

Share Document