Design of Full-bridge DC-DC Converter 311/100 V 1kW with PSPWM Method to Get ZVS Condition

Author(s):  
Toni Prasetya ◽  
F. Danang Wijaya ◽  
Eka Firmansyah

Enhancing the switching frequency can increase the power density of a fullbridge dc-dc converter. However, power loss in switches will increase due to the intersection of voltage and current during turn-on and turn-off transition process. The switching power loss can be reduced by making the condition of zero voltage switching (ZVS) which in this study is obtained by using the phase-shifted PWM method. Achieving this condition requires appropriate parameters such as deadtime, leakage inductance, and the primary current of transformer in sufficient value. In this study, ZVS is achieved when the transformer leakage inductance of 14.12 μH is added with external inductance of 24.29 μH which is installed in series with transformer and when the primary current of transformer is more than 1.289 A.

Author(s):  
Mohamed Salem ◽  
Awang Jusoh ◽  
N.Rumzi N. Idris ◽  
Tole Sutikno ◽  
Iftikhar Abid

This paper presents a study on a new full bridge series resonant converter (SRC) with wide zero voltage switching (ZVS) range, and higher output voltage. The high frequency transformer is connected in series with the LC series resonant tank. The tank inductance is therefore increased; all switches having the ability to turn on at ZVS, with lower switching frequency than the LC tank resonant frequency. Moreover, the step-up high frequency (HF) transformer design steps are introduced in order to increase the output voltage to overcome the gain limitation of the conventional SRC. Compared to the conventional SRC, the proposed converter has higher energy conversion, able to increase the ZVS range by 36%, and provide much higher output power. Finally, the a laboratory prototypes of the both converters with the same resonant tank parameters and input voltage are examined based on 1 and 2.2 kW power respectively, for veryfing  the reliability of the performance and the operation principles of both converters.


2014 ◽  
Vol 573 ◽  
pp. 143-149
Author(s):  
N. Ismayil Kani ◽  
B.V. Manikandan ◽  
Prabakar Perciyal

—This The Pulse Width Modulation (PWM) DC-to-AC inverter has been widely used in many applications due to its circuit simplicity and rugged control scheme. It is however driven by a hard-switching pulse width modulation (PWM) inverter, which has low switching frequency, high switching loss, high electro-magnetic interference (EMI), high acoustic noise and low efficiency, etc. To solve these problems of the hard-switching inverter, many soft-switching inverters have been designed in the past. Unfortunately, high device voltage stress, large dc link voltage ripples, complex control scheme and so on are noticed in the existing soft-switching inverters. This proposed work overcomes the above problems with simple circuit topology and all switches work in zero-voltage switching condition. Comparative analysis between conventional open loop, PI and fuzzy logic based soft switching inverter is also presented and discussed. Keywords—Zero voltage switching, Inverter, Dc link, PI controller, Fuzzy logic system control ,Modulation strategy, Soft switching


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 272
Author(s):  
Hyeon-Seok Lee ◽  
Jae-Jung Yun

This paper presents a highly efficient three-port converter to integrate energy storage (ES) and wireless power transfer (WPT) systems. The proposed converter consists of a bidirectional DC-DC converter and an AC-DC converter with a resonant capacitor. By sharing an inductor and four switches in the bidirectional DC-DC converter, the bidirectional DC-DC converter operates as a DC-DC converter for ES systems and simultaneously as a DC-AC converter for WPT systems. Here, four switches are turned on under the zero voltage switching conditions. The AC-DC converter for WPT system achieves high voltage gain by using a resonance between the resonant capacitor and the leakage inductance of a receiving coil. A 100-W prototype was built and tested to verify the effectiveness of the converter; it had a maximum power-conversion efficiency of 95.9% for the battery load and of 93.8% for the wireless charging load.


2016 ◽  
Vol 31 (4) ◽  
pp. 3273-3288 ◽  
Author(s):  
Tine Konjedic ◽  
Lucijan Korosec ◽  
Mitja Truntic ◽  
Carlos Restrepo ◽  
Miran Rodic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document