scholarly journals Switched time delay control based on neural network for fault detection and compensation in robot

Author(s):  
Maincer Dihya ◽  
Mansour Moufid ◽  
Boudjedir Chemseddine ◽  
Bounabi Moussaab

Fault detection in robotic manipulators is necessary for their monitoring and represents an effective support to use them as independent systems. This present study investigates an enhanced method for representation of the faultless system behavior in a robot manipulator based on a multi-layer perceptron (MLP) neural network learning model which produces the same behavior as the real dynamic manipulator. The study was based on generation of residue by contrasting the actual output of the manipulator with those of the neural network; Then, a time delay control (TDC) is applied to compensate the fault, in which a typical sliding mode command is used to delete the time delay estimate produced by the belated signal in order to obtain strong performances. The results of the simulations performed on a model of the SCARA arm manipulator, showed a good trajectory tracking and fast convergence speed in the presence of faults on the sensors. In addition, the command is completely model independent, for both TDC and MLP neural network, which represents a major advantage of the proposed command.

2003 ◽  
Vol 125 (3) ◽  
pp. 451-454 ◽  
Author(s):  
Han G. Park ◽  
Michail Zak

We present a fault detection method called the gray-box. The term “gray-box” refers to the approach wherein a deterministic model of system, i.e., “white box,” is used to filter the data and generate a residual, while a stochastic model, i.e., “black-box” is used to describe the residual. The residual is described by a three-tier stochastic model. An auto-regressive process, and a time-delay feed-forward neural network describe the linear and nonlinear components of the residual, respectively. The last component, the noise, is characterized by its moments. Faults are detected by monitoring the parameters of the auto-regressive model, the weights of the neural network, and the moments of noise. This method is demonstrated on a simulated system of a gas turbine with time delay feedback actuator.


Automatica ◽  
2019 ◽  
Vol 108 ◽  
pp. 108485 ◽  
Author(s):  
Mostafa Bagheri ◽  
Peiman Naseradinmousavi ◽  
Miroslav Krstić

2013 ◽  
pp. 268-271 ◽  
Author(s):  
T. Ishibashi ◽  
K. Kawaguchi ◽  
H. Shibasaki ◽  
R. Tanaka ◽  
T. Murakami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document