Ex vivo effects of low-dose rivaroxaban on specific coagulation assays and coagulation factor activities in patients under real life conditions

2012 ◽  
Vol 109 (1) ◽  
Author(s):  
H. Mani ◽  
C. Hesse ◽  
G. Stratmann ◽  
E. Lindhoff-Last
2013 ◽  
Vol 109 (01) ◽  
pp. 127-136 ◽  
Author(s):  
Christian Hesse ◽  
Gertrud Stratmann ◽  
Edelgard Lindhoff-Last ◽  
Helen Mani

SummaryGlobal coagulation assays display variable effects at different concentrations of rivaroxaban. The aim of this study is to quantify the ex vivo effects of low-dose rivaroxaban on thrombophilia screening assays and coagulation factor activities based on the administration time, and to show how to mask possible interferences. Plasma samples from 40 patients receiving rivaroxaban 10 mg daily were investigated to measure activities of clotting factor II, V, VII, VIII, IX, XI, XII and XIII; protein C- and protein S-levels; lupus anticoagulants; anticardiolipin IgG and IgM; D-dimer, heparin-platelet factor 4 (HPF4) antibodies and screening tests for von Willebrand disease (VWD). Two hours after rivaroxaban administration, the activities of clotting factors were significantly decreased to different extents, except for factor XIII. Dilution of plasma samples resulted in neutralisation of these interferences. The chromogenic protein C activity assay was not affected by rivaroxaban. Depending on the timing of tablet intake in relation to blood sampling protein S activity was measured falsely high when a clotting assay was used. False-positive results for lupus anticoagulants were observed depending on the assay system used and the administration time of rivaroxaban. ELISA-based assays such as anticardiolipin IgG and IgM, D-dimer, HPF4-antibodies and the turbidimetric assays for VWD were not affected by rivaroxaban. Specific haemostasis clotting tests should be performed directly prior to rivaroxaban intake. Assay optimisation in the presence of rivaroxaban can be achieved by plasma dilution. Immunologic assays are not influenced by rivaroxaban, while chromogenic assays can be used, when they do not depend on factor Xa.


Author(s):  
S Afat ◽  
R Pjontek ◽  
H Hamou ◽  
O Nikoubashman ◽  
M Brockmann ◽  
...  
Keyword(s):  
Low Dose ◽  
Ex Vivo ◽  

1991 ◽  
Vol 65 (05) ◽  
pp. 504-510 ◽  
Author(s):  
Raffaele De Caterina ◽  
Rosa Sicari ◽  
Walter Bernini ◽  
Guido Lazzerini ◽  
Giuliana Buti Strata ◽  
...  

SummaryTiclopidine (T) and aspirin (ASA) are two antiplatelet drugs both capable of prolonging bleeding time (BT), with a different mechanism of action. A synergism in BT prolongation has been reported and is currently considered an argument for not recommending their combination. However, a profound suppression of platelet function might be a desirable counterpart of a marked prolongation of BT, with a possible use in selected clinical situations. We therefore studied ex vivo platelet function (aggregation by ADP 0.5-1-2.5 μM; adrenaline 0.75-2.5 μM; collagen 1.5-150 μg/ml; arachidonic acid 1 mM; PAF 1 μM; adrenaline 0.17 μM + ADP 0.62 μM; serum thromboxane ([TX]B2 generation) and BT (Mielke) in 6 patients with stable coronary artery disease receiving such combination. Patients underwent sequential laboratory evaluations at baseline, after 7 days of T 250 mg b.i.d., before and after the intravenous administration of ASA 500 mg, respectively, and, finally, after a minimum of 7 days of sole ASA oral administration (50 mg/day). The experimental design, therefore, allowed a comparison of T and ASA effects (2nd and 4th evaluation), and an assessment of the combination effect (3rd evaluation). Platelet aggregation in response to all doses of ADP was depressed more by T than by ASA. Conversely, responses to adrenaline, and arachidonate were affected more by ASA than by T. For all other agents, differences were not significant. T + ASA combination was more effective (p <0.05) than either treatment alone in depressing responses to high-dose collagen (% over control, mean ± SEM: T: 95 ± 3; ASA: 96 ± 5; T + ASA: 89 ± 4). Serum TXB2 (basal, ng/ml: 380 ± 54) did not change with T (372 ± 36), dropped to <1 ng/ml on ASA injection and slightly re-increased to 9.1 ± 3.1 ng/ml on oral low-dose ASA. BT (basal 7.4 ± 0.6 min) was affected similarly by T (9.2 ± 0.8) or ASA (9.7 ± 0.9) alone, but increased to 15.0 ± 0.7 min on combination treatment (106% increase over control). Thus, the strong synergism in BT prolongation by ASA-T combination has a counterpart in the inhibition of platelet function in response to strong stimuli such as high-dose collagen, not otherwise affected significantly by single-drug treatment. This effect is a possible rationale for the clinical evaluation of T + ASA combination.


1984 ◽  
Vol 52 (03) ◽  
pp. 276-280 ◽  
Author(s):  
Sam Schulman ◽  
Dieter Lockner ◽  
Kurt Bergström ◽  
Margareta Blombäck

SummaryIn order to investigate whether a more intensive initial oral anticoagulation still would be safe and effective, we performed a prospective randomized study in patients with deep vein thrombosis. They received either the conventional regimen of oral anticoagulation (“low-dose”) and heparin or a more intense oral anticoagulation (“high-dose”) with a shorter period of heparin treatment.In the first part of the study 129 patients were randomized. The “low-dose” group reached a stable therapeutic prothrombin complex (PT)-level after 4.3 and the “high-dose” group after 3.3 days. Heparin was discontinued after 6.0 and 5.0 days respectively. There was no difference in significant hemorrhage between the groups, and no clinical signs of progression of the thrombosis.In the second part of the study another 40 patients were randomized, followed with coagulation factor II, VII, IX and X and with repeated venograms. A stable therapeutic PT-level was achieved after 4.4 (“low-dose”) and 3.7 (“high-dose”) days, and heparin was discontinued after 5.4 and 4.4 days respectively. There were no clinical hemorrhages, the activity of the coagulation factors had dropped to the same level in both groups at the time when heparin was discontinued and no thromboembolic complications occurred.Our oral anticoagulation regimen with heparin treatment for an average of 4.4-5 days seems safe and reduces in-patient costs.


2019 ◽  
Vol 29 (6) ◽  
pp. 648-654 ◽  
Author(s):  
Joanna Mangana ◽  
Florentia Dimitriou ◽  
Ralph Braun ◽  
Sabine Ludwig ◽  
Reinhard Dummer ◽  
...  

2019 ◽  
Vol 8 (2) ◽  
pp. 227-237 ◽  
Author(s):  
Alexandra E. Turley ◽  
Joseph W. Zagorski ◽  
Rebekah C. Kennedy ◽  
Robert A. Freeborn ◽  
Jenna K. Bursley ◽  
...  

The purpose of this study was to determine the effect of subchronic, oral, low-dose cadmium exposure (32 ppm over 10 weeks) on the rat immune system. We found that cadmium exposure increased the induction of IFNγ and IL-10 in T cells activated ex vivo after cadmium exposure.


2018 ◽  
Vol 26 (3) ◽  
pp. 198-210 ◽  
Author(s):  
Suat Gonul ◽  
Tuncay Namli ◽  
Sasja Huisman ◽  
Gokce Banu Laleci Erturkmen ◽  
Ismail Hakki Toroslu ◽  
...  

AbstractObjectiveWe aim to deliver a framework with 2 main objectives: 1) facilitating the design of theory-driven, adaptive, digital interventions addressing chronic illnesses or health problems and 2) producing personalized intervention delivery strategies to support self-management by optimizing various intervention components tailored to people’s individual needs, momentary contexts, and psychosocial variables.Materials and MethodsWe propose a template-based digital intervention design mechanism enabling the configuration of evidence-based, just-in-time, adaptive intervention components. The design mechanism incorporates a rule definition language enabling experts to specify triggering conditions for interventions based on momentary and historical contextual/personal data. The framework continuously monitors and processes personal data space and evaluates intervention-triggering conditions. We benefit from reinforcement learning methods to develop personalized intervention delivery strategies with respect to timing, frequency, and type (content) of interventions. To validate the personalization algorithm, we lay out a simulation testbed with 2 personas, differing in their various simulated real-life conditions.ResultsWe evaluate the design mechanism by presenting example intervention definitions based on behavior change taxonomies and clinical guidelines. Furthermore, we provide intervention definitions for a real-world care program targeting diabetes patients. Finally, we validate the personalized delivery mechanism through a set of hypotheses, asserting certain ways of adaptation in the delivery strategy, according to the differences in simulation related to personal preferences, traits, and lifestyle patterns.ConclusionWhile the design mechanism is sufficiently expandable to meet the theoretical and clinical intervention design requirements, the personalization algorithm is capable of adapting intervention delivery strategies for simulated real-life conditions.


Sign in / Sign up

Export Citation Format

Share Document