Association of homocysteine (but not of MTHFR 677 C>T, MTR 2756 A>G, MTRR 66 A>G and TCN2 776 C>G) with ischaemic cerebrovascular disease in Sicily

2006 ◽  
Vol 96 (08) ◽  
pp. 154-159 ◽  
Author(s):  
Rosa-Maria Guéant-Rodriguez ◽  
Guido Anello ◽  
Rosario Spada ◽  
Antonino Romano ◽  
Adrian Fajardo ◽  
...  

SummaryAssociation between methylenetetrahydrofolate reductase polymorphism (MTHFR 677 C>T), a determinant of homocysteine plasma level (t-Hcys), with ischaemc cerebrovascular disease (iCVD) seems to be neutral in North Europe and North America. The association of 2756 A>G of methionine synthase (MTR), 66 A>G of methionine synthase reductase (MTRR) and 776 C>G of transcobalamin (TCN2) needs to be evaluated further. It was the objective of this study to evaluate the association of these polymorphisms, t-Hcys, vitamin B12 and folate levels with iCVD, in an Italian population from Sicily. We investigated the association of these polymorphisms, t-Hcys, vitamin B12 and folate with iCVD in 252 subjects, including 131 cases and 121 sexand agematched healthy controls. t-Hcys was higher in the iCVD group than in controls [15.3 (11.5–17.9) vs. 11.6 (9.4–14.5) µM; P=0. 0007] and also in subjects withTCN2 776CG genotype, compared to homozygous genotypes [13.5 (9.9± 16.9) vs. 11.7 (9.6 ± 14.4) µM; P=0. 0327]. The folate level in cases and controls was consistent with an adequate dietary intake [12.7 (9.0–15.3) vs. 12.5 (9.6–16.9) nM; P=0. 7203]. In multivariate analysis, t-Hcys was a significant independent predictor of iCVD with an odds ratio of 1.14 (95% C.I. : 1.06–1.24; P=0. 0006). No association was found between MTHFR, MTR, MTRR and TCN2 polymorphisms and iCVD risk. We have found an influence of t-Hcys and a neutral effect of MTHFR, MTR, MTRR and TCN2 on iCVD risk in Sicily. The neutral influence of these polymorphisms may be explained by adequate status in folate and vitamin B12. Other factors underlying the increased t-Hcys need further investigations.

Blood ◽  
2003 ◽  
Vol 101 (7) ◽  
pp. 2483-2488 ◽  
Author(s):  
Leo A. J. Kluijtmans ◽  
Ian S. Young ◽  
Colin A. Boreham ◽  
Liam Murray ◽  
Dorothy McMaster ◽  
...  

A modestly elevated total plasma homocysteine concentration (tHcy) is generally accepted as an independent and graded risk factor for various pathologies, including vascular diseases, neural tube defects, Alzheimer disease, and pregnancy complications. We analyzed 5 common functional polymorphisms in enzymes involved in homocysteine metabolism (ie, methylenetetrahydrofolate reductase [MTHFR] 677C>T and 1298A>C, methionine synthase [MTR] 2756A>G, cystathionine β-synthase [CBS] 844ins68, and methionine synthase reductase [MTRR] 66A>G) in 452 young adults, and quantified their independent and interactive effects on tHcy concentrations. Serum folate, red cell folate, vitamin B12, and tHcy concentrations were significantly influenced by MTHFR 677C>T genotypes. A particularly strong interaction was observed between theMTHFR 677TT genotype and serum folate, which led to a high tHcy phenotype that was more pronounced in males. The genetic contribution to the variance in tHcy was estimated to be approximately 9%, compared with approximately 35% that could be attributed to low folate and vitamin B12. Our study indicates that dietary factors are centrally important in the control of tHcy levels in young adults with additional, but somewhat weaker, genetic effects. These data underscore the potential benefits that may be gained by improving the dietary status of young adults, and provide support for the implementation of folate/B-vitamin food fortification programs.


Cephalalgia ◽  
2013 ◽  
Vol 33 (7) ◽  
pp. 469-482 ◽  
Author(s):  
Kathryn A Roecklein ◽  
Ann I Scher ◽  
Albert Smith ◽  
Tamara Harris ◽  
Gudny Eiriksdottir ◽  
...  

Aims The C677T variant in the methylenetetrahydrofolate reductase ( MTHFR; EC 1.5.1.20) enzyme, a key player in the folate metabolic pathway, has been associated with increased risk of migraine with aura. Other genes encoding molecular components of this pathway include methionine synthase ( MTR; EC 2.1.1.13) and methionine synthase reductase ( MTRR; EC 2.1.1.135) among others. We performed a haplotype analysis of migraine risk and MTHFR, MTR, and MTRR. Methods Study participants are from a random sub-sample participating in the population-based AGES-Reykjavik Study, including subjects with non-migraine headache ( n = 367), migraine without aura ( n = 85), migraine with aura ( n = 167), and no headache ( n = 1347). Haplotypes spanning each gene were constructed using Haploview. Association testing was performed on single SNP and haplotypes using logistic regression, controlling for demographic and cardiovascular risk factors and correcting for multiple testing. Results Haplotype analysis suggested an association between MTRR haplotypes and reduced risk of migraine with aura. All other associations were not significant after correcting for multiple testing. Conclusions These results suggest that MTRR variants may protect against migraine with aura in an older population.


2011 ◽  
Vol 43 (16) ◽  
pp. 965-973 ◽  
Author(s):  
Ileana Terruzzi ◽  
Pamela Senesi ◽  
Anna Montesano ◽  
Antonio La Torre ◽  
Giampietro Alberti ◽  
...  

Physical exercise induces adaptive changes leading to a muscle phenotype with enhanced performance. We first investigated whether genetic polymorphisms altering enzymes involved in DNA methylation, probably responsible of DNA methylation deficiency, are present in athletes' DNA. We determined the polymorphic variants C667T/A1298C of 5,10-methylenetetrahydrofolate reductase (MTHFR), A2756G of methionine synthase (MTR), A66G of methionine synthase reductase (MTRR), G742A of betaine:homocysteine methyltransferase (BHMT), and 68-bp ins of cystathionine β-synthase (CBS) genes in 77 athletes and 54 control subjects. The frequency of MTHFR (AC), MTR (AG), and MTRR (AG) heterozygous genotypes was found statistically different in the athletes compared with the control group ( P = 0.0001, P = 0.018, and P = 0.0001), suggesting a reduced DNA methylating capacity. We therefore assessed whether DNA hypomethylation might increase the expression of myogenic proteins expressed during early (Myf-5 and MyoD), intermediate (Myf-6), and late-phase (MHC) of myogenesis in a cellular model of hypomethylated or unhypomethylated C2C12 myoblasts. Myogenic proteins are largely induced in hypomethylated cells [fold change (FC) = Myf-5: 1.21, 1.35; MyoD: 0.9, 1.47; Myf-6: 1.39, 1.66; MHC: 1.35, 3.10 in GMA, DMA, respectively] compared with the control groups (FC = Myf-5: 1.0, 1.38; MyoD: 1.0, 1.14; Myf-6: 1.0, 1.44; MHC: 1.0, 2.20 in GM, DM, respectively). Diameters and length of hypomethylated myotubes were greater then their respective controls. Our findings suggest that DNA hypomethylation due to lesser efficiency of polymorphic MTHFR, MS, and MSR enzymes induces the activation of factors determining proliferation and differentiation of myoblasts promoting muscle growth and increase of muscle mass.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Aiping Xu ◽  
Weiping Wang ◽  
Xiaolei Jiang

Background: We performed the present study to better elucidate the correlations of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene polymorphisms with the risk of congenital heart diseases (CHD). Methods: Eligible articles were searched in PubMed, Medline, Embase and CNKI. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to detect any potential associations of MTHFR and MTRR gene polymorphisms with CHD. Results: A total of 47 eligible studies were finally included in our meta-analysis. Our overall analyses suggested that MTRR rs1801394, MTRR rs1532268, MTHFR rs1801131 and MTHFR rs1801133 polymorphisms were all significantly associated with the risk of CHD in certain genetic models. Further subgroup analyses according to ethnicity of study participants demonstrated that the MTRR rs1801394 polymorphism was significantly correlated with the risk of CHD only in Asians, whereas MTRR rs1532268, MTHFR rs1801133 and MTHFR rs1801131 polymorphisms were significantly correlated with the risk of CHD in both Asians and Caucasians. Conclusions: Our findings indicated that MTRR rs1532268, MTHFR rs1801131 and MTHFR rs1801133 polymorphisms may affect the risk of CHD in Asians and Caucasians, while the MTRR rs1801394 polymorphism may only affect in risk of CHD in Asians.


Sign in / Sign up

Export Citation Format

Share Document