Effect of staphylokinase-derived nonadecapeptide on the activation of plasminogen

2007 ◽  
Vol 97 (05) ◽  
pp. 795-802 ◽  
Author(s):  
Kiyotaka Okada ◽  
Shigeru Ueshima ◽  
Hiroyuki Matsuno ◽  
Naoyuki Kawao ◽  
Chikako Okamoto ◽  
...  

SummaryStaphylokinase (SAK) expresses plasminogen activator (PA) activity by forming a complex with plasmin. The interaction between the plasmin-SAK complex and plasminogen was investigated using synthesized peptides, which were constructed according to the amino acid sequence of the SAK molecule.A synthetic nonadecapeptide (SAK22–40) corresponding to Glu22-Leu40 by the SAK molecule enhanced the activation of Glu-plasminogen by the plasmin-SAK complex.Analysis of IAsys resonant mirror biosensor showed that SAK22–40 bound to Glu-plasminogen.This binding was completely inhibited by IgG against the B-chain in the plasminogen molecule. But, this binding was not inhibited by IgG against lysine-binding sites (LBS) of the A-chain in the plasminogen molecule. The substitution of Lys35 with Ala in SAK22–40 did not enhance the activation of Glu-plasminogen by the plasmin-SAK complex. When SAK22–40 was administrated in a mouse thrombosis model, earlier recanalization was observed than in mice with vehicle administration. Thus, a newly synthesized peptide, SAK22–40 enhanced Glu-plasminogen activation and induced effective thrombolysis.

1996 ◽  
Vol 75 (03) ◽  
pp. 497-502 ◽  
Author(s):  
Hadewijch L M Pekelharing ◽  
Henne A Kleinveld ◽  
Pieter F C.C.M Duif ◽  
Bonno N Bouma ◽  
Herman J M van Rijn

SummaryLp(a) is an LDL-like lipoprotein plus an additional apolipoprotein apo(a). Based on the structural homology of apo(a) with plasminogen, it is hypothesized that Lp(a) interferes with fibrinolysis. Extracellular matrix (ECM) produced by human umbilical vein endothelial cells was used to study the effect of Lp(a) and LDL on plasminogen binding and activation. Both lipoproteins were isolated from the same plasma in a single step. Plasminogen bound to ECM via its lysine binding sites. Lp(a) as well as LDL were capable of competing with plasminogen binding. The degree of inhibition was dependent on the lipoprotein donor as well as the ECM donor. When Lp(a) and LDL obtained from one donor were compared, Lp(a) was always a much more potent competitor. The effect of both lipoproteins on plasminogen binding was reflected in their effect on plasminogen activation. It is speculated that Lp(a) interacts with ECM via its LDL-like lipoprotein moiety as well as via its apo(a) moiety.


Peptides 1994 ◽  
1995 ◽  
pp. 737-738
Author(s):  
M. Huguet ◽  
S. Stoeva ◽  
C. Decker ◽  
S. Wilhelm ◽  
T. Stiefel ◽  
...  

1974 ◽  
Vol 60 (2) ◽  
pp. 717-722 ◽  
Author(s):  
Daniel A. Walz ◽  
Walter H. Seegers

1975 ◽  
Author(s):  
D. A. Walz ◽  
D. Hewett-Emmett ◽  
J. Reuterby ◽  
L. E. McCoy ◽  
W. H. Seegers

Bovine and human prothrombins can be selectively activated to release PR fragment and 0 fragment. In addition, the generation of human thrombin is accompanied by the loss of a 13 residue peptide, designated Al. We have determined the complete amino acid sequence of the non-thrombin portion of bovine prothrombin and have established regions of significant internal homology. A region of bovine PR fragment (66-128) is homologous to a region of the bovine 0 fragment (15-77). In addition, residues 1-14 of the 0 fragment and residues 17-30 of the A chain of thrombin are homologous. A theoretical primordial prothrombin gene can be proposed: chromosomal misalignment and an unequal crossover of this gene would account for the internal homology and for the molecular size of prothrombin which is approximately 16,000 daltons greater than its related molecules, autoprothrombin III (Factor X) and Factor IX. Preliminary structure work on human prothrombin supports this gene duplication hypothesis. The initial sequence of human PR fragment is nearly identical to that of bovine PR fragment, presumably due to the functionally important modified glutamic acid residues. The 0 fragment and A chain of human prothrombin are also homologous.


1987 ◽  
Author(s):  
E A van den Berg ◽  
E Sprengers ◽  
M Jaye ◽  
W Burgess ◽  
V W M van Hinsbergh

Cultured human endothelial cells (HEC) increase their production of plasminogen activator inhibitor (PAI-1) upon stimulation with endotoxin and IL-1, agents that are known to cause an increase in PAI-1 levels in vivo. In order to study the regulation of PAI-1 synthesis at the mRNA level, we isolated a cDNA clone for the human PAI-1 gene from an endothelial expression cDNA library in λ gt 11 by screening with a PAI-1 specific antibody. Three positive cross-hybridizing clones were isolated. The longest insert (1500 bp) was partially sequenced (1000 bp). The sequence was identical to the PAI-1 sequence recently reported by others. The identity of the cDNA clone was further confirmed by comparison with part of the amino acid sequence of PAI-1. For that purpose t-PA-PAI-1 complex was purified from HEC conditioned medium by immunoadsorption to anti-t-PA IgG, and a suitable peptide was sequenced after comparison of the HPLC elution profiles of CNBr digests of t-PA and t-PA-PAI-1 complex. The amino acid sequence (M)FRQFQADFT completely matches the sequence predicted from the cDNA sequence.By hybridization of the cDNA probe to Northern blots of total cellular RNA from human umbilical vein and artery EC (HUVEC, HUAEC), two transcripts of 2.3 and 3 kb were found. Primary HUAEC, incubated for 18 hours in growth medium, produced considerable although variable levels of PAI-1 activity and contained PAI-1 mRNA levels comparable to those found in subcultured HUAEC. When subcultured HUEC were incubated for 6 h with endotoxin, IL-1 or TNF, a 2-fold increase in PAI-1 mRNA was found with each of these mediators. Stimulation of the cells in the presence of cycloheximide resulted in a further increase of the 3 kb PAI-1 transcript. The 3’ end of this transcript contains a 75 bp AT-rich sequence. Similar 3’ AT-rich sequences have been found in mRNA’s for a number of inflammatory mediators and cellular oncogenes, and in some cases it has been shown that removal of the sequence increased mRNA stability. The influence of cyclohex-imid on the larger PAI-1 transcript might be explained by inhibition of synthesis of a specific nuclease that controls the level of mRNA’s harbouring such an AT rich sequence.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Hongdong Bai ◽  
Samir Nangia ◽  
Robert J. Parmer

The local environment of neurosecretory cells contains the major components of the plasminogen activation system, including the plasminogen activators, tissue plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), as well as binding sites for t-PA, the receptor for u-PA (uPAR), and also the plasminogen activator inhibitor, PAI-1. Furthermore, these cells express specific binding sites for plasminogen, which is available in the circulation and in interstitial fluid. Colocalization of plasminogen and its activators on cell surfaces provides a mechanism for promoting local plasminogen activation. Plasmin is retained on the cell surface where it is protected from its inhibitor,α2-antiplasmin. In neurosecretory cells, localized plasmin activity provides a mechanism for extracellular processing of secreted hormones. Neurotransmitter release from catecholaminergic cells is negatively regulated by cleavage products formed by plasmin-mediated proteolysis. Recently, we have identified a major plasminogen receptor, Plg-RKT. We have found that Plg-RKTis highly expressed in chromaffin cells of the adrenal medulla as well as in other catecholaminergic cells and tissues. Plg-RKT-dependent plasminogen activation plays a key role in regulating catecholaminergic neurosecretory cell function.


1990 ◽  
Vol 126 (1) ◽  
pp. 141-149 ◽  
Author(s):  
W. C. Warren ◽  
R. Liang ◽  
G. G. Krivi ◽  
N. R. Siegel ◽  
R. V. Anthony

ABSTRACT Discrepancies exist in the reported purity and biological activity of ovine placental lactogen (oPL), and little structural characterization has been reported. Ovine PL was purified from fetal cotyledonary tissue (day 100 of gestation) by monitoring activity with a recombinant bovine GH (bGH) liver radioreceptor assay. Two hundred grams of tissue yielded 4·2 mg of oPL, with an ∼ 1000-fold purification of oPL specific activity following initial tissue extraction. The oPL was radioiodinated and used in an ovine fetal liver (day 100 of gestation) radioreceptor assay to examine competitive displacement of oPL, ovine GH (oGH) and ovine prolactin (oPRL). The potency of oPL (ED50 = 0·18 nmol/l; ED50 is the quantity of ligand necessary to displace 50% of specifically bound 125I-labelled oPL) was greater than that of oGH (ED50 = 4·1 nmol/l) and oPRL (ED50 = 1·1 μmol/l) in competing for 125I-labelled oPL-binding sites. Attempts to sequence the NH2 terminus of oPL by vapour-phase sequencing indicated that the NH2 terminus was blocked. Purified oPL was subjected to trypsin and CnBr digestion, and two CnBr and six tryptic peptides were sequenced. The peptide sequences were compared with other PLs, oPRL and bGH for sequence similarity, and found to be most similar to bovine PL (bPL; 68% overall identity) and oPRL (47% overall identity). Complementary DNA (cDNA) clones were isolated for oPL by screening a λZAP cDNA library with a cDNA coding for bPL. Three cDNAs were nucleotide sequenced, and their combined sequence included 41 nucleotides of 5'-untranslated region, the complete coding region of pre-oPL (708 nucleotides) and a portion of the 3' untranslated region (158 nucleotides). The predicted amino acid sequence derived from the nucleotide sequence confirmed homology to bPL (67%) and oPRL (48%). Little amino acid sequence existed with other PLs (≤29%) or GH proteins (≤27%). These results suggest that oPL and oGH are more biologically similar in their ability to compete for fetal liver binding sites, but that oPL is structurally more similar to oPRL. Elucidation of exact structure–function relationships for oPL will, however, require further investigation. Journal of Endocrinology (1990) 126, 141–149


1972 ◽  
Vol 127 (1) ◽  
pp. 199-206 ◽  
Author(s):  
P. G. H. Byfield ◽  
M. B. Clark ◽  
K. Turner ◽  
G. V. Foster ◽  
I. MacIntyre

1. Two antisera were obtained from a single rabbit. Both are highly specific for human calcitonin M but react with different parts of the amino acid sequence. 2. The different sequences that react with the antibodies of the two antisera were located. The first antiserum reacts at two sites in the molecule, one in the sequence residues 11–18, probably with residue 17 as the immunodominant group, and another on either side of the 28–29 peptide bond. The second antiserum, harvested 9 months later, reacts principally at one site bridging the 28–29 peptide bond. 3. A consideration of the properties of the hormone's binding sites and of data relating biological activity to structure enables some conclusions to be drawn with regard to the shape of the molecule. It appears that the peptide chain is folded to bring N- and C-termini closer together and that there is non-covalent interaction between regions in the chain near both termini. One of these is located near residue 8.


Sign in / Sign up

Export Citation Format

Share Document