scholarly journals Distinct roles for the α, β and γ1 isoforms of protein phosphatase 1 in the outside-in αIIbβ3 integrin signalling-dependent functions

2013 ◽  
Vol 109 (01) ◽  
pp. 118-129 ◽  
Author(s):  
Tanvir Khatlani ◽  
Lavanya Kailasam ◽  
Nawaf Alrehani ◽  
Subhashree Pradhan ◽  
Vinod K. Vijayan

SummaryAlthough protein kinases and phosphatases participate in integrin αIIbβ3 signalling, whether integrin functions are regulated by the catalytic subunit of protein phosphatase 1 (PP1c) isoforms are unclear. We show that siRNA mediated knockdown of all PP1c isoforms (α, β and γ1) in 293 αIIbβ3 cells decreased adhesion to immobilised fibrinogen and fibrin clot retraction. Selective knockdown of only PP1cγ1 did not alter adhesion or clot retraction, while depletion of PP1cβ decreased both functions. Unexpectedly, knockdown of PP1cα enhanced αIIbβ3 adhesion to fibrinogen and clot retraction. Protein interaction studies revealed that all PP1c isoforms can interact with the integrin αIIb subunit. Phospho-profiling studies revealed an enhanced activation of mitogen- activated protein kinase (MAPK) p38 in the PP1cα depleted cells. Enhanced adhesive phenotype displayed by the PP1cα-depleted 293 αIIbβ3 cells was blocked by pharmacological inhibition of p38. Conversely, the decreased adhesion of PP1cα overexpressing cells was rescued by the expression of constitutively active p38α or p38γ. Thus, PP1c isoforms have distinct contribution to the outside-in αIIbβ3 signalling- dependent functions in 293 αIIbβ3 cells. Moreover, PP1cα negatively regulates integrin function by suppressing the p38 pathway.

2003 ◽  
Vol 278 (21) ◽  
pp. 18945-18952 ◽  
Author(s):  
Irute Meskiene ◽  
Emmanuel Baudouin ◽  
Alois Schweighofer ◽  
Aneta Liwosz ◽  
Claudia Jonak ◽  
...  

2013 ◽  
Vol 24 (19) ◽  
pp. 3145-3154 ◽  
Author(s):  
Xia Li ◽  
Susan Ferro-Novick ◽  
Peter Novick

Ptc1p, a type 2C protein phosphatase, is required for a late step in cortical endoplasmic reticulum (cER) inheritance in Saccharomyces cerevisiae. In ptc1Δ cells, ER tubules migrate from the mother cell and contact the bud tip, yet fail to spread around the bud cortex. This defect results from the failure to inactivate a bud tip–associated pool of the cell wall integrity mitogen-activated protein kinase, Slt2p. Here we report that the polarisome complex affects cER inheritance through its effects on Slt2p, with different components playing distinct roles: Spa2p and Pea2p are required for Slt2p retention at the bud tip, whereas Bni1p, Bud6p, and Sph1p affect the level of Slt2p activation. Depolymerization of actin relieves the ptc1Δ cER inheritance defect, suggesting that in this mutant the ER becomes trapped on the cytoskeleton. Loss of Sec3p also blocks ER inheritance, and, as in ptc1Δ cells, this block is accompanied by activation of Slt2p and is reversed by depolymerization of actin. Our results point to a common mechanism for the regulation of ER inheritance in which Slt2p activity at the bud tip controls the association of the ER with the actin-based cytoskeleton.


2008 ◽  
Vol 42 (4) ◽  
pp. 367-374 ◽  
Author(s):  
Joseph D. Raffetto ◽  
Christopher H. Gram ◽  
Kristen C. Overman ◽  
James O. Menzoian

2005 ◽  
Vol 25 (20) ◽  
pp. 8948-8959 ◽  
Author(s):  
Amy N. Abell ◽  
Jaime A. Rivera-Perez ◽  
Bruce D. Cuevas ◽  
Mark T. Uhlik ◽  
Susan Sather ◽  
...  

ABSTRACT Skeletal disorders and neural tube closure defects represent clinically significant human malformations. The signaling networks regulating normal skeletal patterning and neurulation are largely unknown. Targeted mutation of the active site lysine of MEK kinase 4 (MEKK4) produces a kinase-inactive MEKK4 protein (MEKK4K1361R). Embryos homozygous for this mutation die at birth as a result of skeletal malformations and neural tube defects. Hindbrains of exencephalic MEKK4K1361R embryos show a striking increase in neuroepithelial cell apoptosis and a dramatic loss of phosphorylation of MKK3 and -6, mitogen-activated protein kinase kinases (MKKs) regulated by MEKK4 in the p38 pathway. Phosphorylation of MAPK-activated protein kinase 2, a p38 substrate, is also inhibited, demonstrating a loss of p38 activity in MEKK4K1361R embryos. In contrast, the MEK1/2-extracellular signal-regulated kinase 1 (ERK1)/ERK2 and MKK4-Jun N-terminal protein kinase pathways were unaffected. The p38 pathway has been shown to regulate the phosphorylation and expression of the small heat shock protein HSP27. Compared to the wild type, MEKK4K1361R fibroblasts showed significantly reduced phosphorylation of p38 and HSP27, with a corresponding heat shock-induced instability of the actin cytoskeleton. Together, these data demonstrate MEKK4 regulation of p38 and that substrates downstream of p38 control cellular homeostasis. The findings are the first demonstration that MEKK4-regulated p38 activity is critical for neurulation.


Sign in / Sign up

Export Citation Format

Share Document