scholarly journals Stress-induced Protein Phosphatase 2C Is a Negative Regulator of a Mitogen-activated Protein Kinase

2003 ◽  
Vol 278 (21) ◽  
pp. 18945-18952 ◽  
Author(s):  
Irute Meskiene ◽  
Emmanuel Baudouin ◽  
Alois Schweighofer ◽  
Aneta Liwosz ◽  
Claudia Jonak ◽  
...  
1994 ◽  
Vol 14 (7) ◽  
pp. 4419-4426
Author(s):  
W Matten ◽  
I Daar ◽  
G F Vande Woude

In Xenopus oocytes, initiation of maturation is dependent on reduction of cyclic AMP-dependent protein kinase (PKA) activity and the synthesis of the mos proto-oncogene product. Mos is required during meiosis I for the activation of both maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Here we show that injection of the catalytic subunit of PKA (PKAc) prevented progesterone-induced synthesis of endogenous Mos as well as downstream MPF and MAPK activation. However, PKAc did not prevent injected soluble Mos product from activating MAPK. While MAPK is activated during Mos-PKAc coinjection, attendant MPF activation is blocked. Additionally, PKAc caused a potent block in the electrophoretic mobility shift of cdc25 that is associated with phosphatase activation. This inhibition of cdc25 activity was not reversed by progesterone, Mos, or MPF. We conclude that PKAc acts as a negative regulator at several points in meiotic maturation by preventing both Mos translation and MPF activation.


1996 ◽  
Vol 16 (12) ◽  
pp. 6698-6706 ◽  
Author(s):  
B H Spain ◽  
K S Bowdish ◽  
A R Pacal ◽  
S F Staub ◽  
D Koo ◽  
...  

We have isolated two novel human cDNAs, gps1-1 and gps2, that suppress lethal G-protein subunit-activating mutations in the pheromone response pathway of the yeast Saccharomyces cerevisiae. Suppression of other pathway-activating events was examined. In wild-type cells, expression of either gps1-1 or gps2 led to enhanced recovery from cell cycle arrest induced by pheromone. Sequence analysis indicated that gps1-1 contains only the carboxy-terminal half of the gps1 coding sequence. The predicted gene product of gps1 has striking similarity to the protein encoded by the Arabidopsis FUS6 (COP11) gene, a negative regulator of light-mediated signal transduction that is known to be essential for normal development. A chimeric construct containing gps1 and FUS6 sequences also suppressed the yeast pheromone pathway, indicating functional conservation between these human and plant genes. In addition, when overexpressed in mammalian cells, gps1 or gps2 potently suppressed a RAS- and mitogen-activated protein kinase-mediated signal and interfered with JNK activity, suggesting that signal repression is part of their normal function. For gps1, these results are consistent with the proposed function of FUS6 (COP11) as a signal transduction repressor in plants.


2013 ◽  
Vol 24 (19) ◽  
pp. 3145-3154 ◽  
Author(s):  
Xia Li ◽  
Susan Ferro-Novick ◽  
Peter Novick

Ptc1p, a type 2C protein phosphatase, is required for a late step in cortical endoplasmic reticulum (cER) inheritance in Saccharomyces cerevisiae. In ptc1Δ cells, ER tubules migrate from the mother cell and contact the bud tip, yet fail to spread around the bud cortex. This defect results from the failure to inactivate a bud tip–associated pool of the cell wall integrity mitogen-activated protein kinase, Slt2p. Here we report that the polarisome complex affects cER inheritance through its effects on Slt2p, with different components playing distinct roles: Spa2p and Pea2p are required for Slt2p retention at the bud tip, whereas Bni1p, Bud6p, and Sph1p affect the level of Slt2p activation. Depolymerization of actin relieves the ptc1Δ cER inheritance defect, suggesting that in this mutant the ER becomes trapped on the cytoskeleton. Loss of Sec3p also blocks ER inheritance, and, as in ptc1Δ cells, this block is accompanied by activation of Slt2p and is reversed by depolymerization of actin. Our results point to a common mechanism for the regulation of ER inheritance in which Slt2p activity at the bud tip controls the association of the ER with the actin-based cytoskeleton.


2004 ◽  
Vol 24 (2) ◽  
pp. 573-583 ◽  
Author(s):  
Myungjin Kim ◽  
Guang-Ho Cha ◽  
Sunhong Kim ◽  
Jun Hee Lee ◽  
Jeehye Park ◽  
...  

ABSTRACT Mitogen-activated protein kinase (MAPK) phosphatase 3 (MKP-3) is a well-known negative regulator in the Ras/extracellular signal-regulated kinase (ERK)-MAPK signaling pathway responsible for cell fate determination and proliferation during development. However, the physiological roles of MKP-3 and the mechanism by which MKP-3 regulates Ras/Drosophila ERK (DERK) signaling in vivo have not been determined. Here, we demonstrated that Drosophila MKP-3 (DMKP-3) is critically involved in cell differentiation, proliferation, and gene expression by suppressing the Ras/DERK pathway, specifically binding to DERK via the N-terminal ERK-binding domain of DMKP-3. Overexpression of DMKP-3 reduced the number of photoreceptor cells and inhibited wing vein differentiation. Conversely, DMKP-3 hypomorphic mutants exhibited extra photoreceptor cells and wing veins, and its null mutants showed striking phenotypes, such as embryonic lethality and severe defects in oogenesis. All of these phenotypes were highly similar to those of the gain-of-function mutants of DERK/rl. The functional interaction between DMKP-3 and the Ras/DERK pathway was further confirmed by genetic interactions between DMKP-3 loss-of-function mutants or overexpressing transgenic flies and various mutants of the Ras/DERK pathway. Collectively, these data provide the direct evidences that DMKP-3 is indispensable to the regulation of DERK signaling activity during Drosophila development.


Sign in / Sign up

Export Citation Format

Share Document