Plasmatic tissue factor pathway inhibitor is a major determinant of clotting in factor VIII inhibited plasma or blood

2013 ◽  
Vol 109 (03) ◽  
pp. 450-457 ◽  
Author(s):  
Sabine Knappe ◽  
Bernd Jilma ◽  
Ulla Derhaschnig ◽  
Rudolf Hartmann ◽  
Michael Palige ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) is a major inhibitor of coagulation. We therefore hypothesised that high plasmatic TFPI levels are associated with impaired ex vivo clotting in a model of acquired haemophilia. Blood samples were collected in a prospective clinical study from 30 healthy volunteers. Coagulation in normal or factor VIII (FVIII)-inhibited human blood or plasma was measured by the calibrated automated thrombogram (CAT) and rotational thromboelastometry (ROTEM). Both methods are global haemostatic assays that provide insight into the whole coagulation process. Monoclonal mouse antibodies raised against either the C-terminus or the Kunitz domain 2 of TFPI were used to determine full-length (fl-) and total TFPI by an enzyme-immunoassay. Clotting times and parameters of thrombin generation correlated with TFPI levels. Subjects with low fl-TFPI levels had significantly shorter clotting times and a higher endogenous thrombin potential (ETP) compared to those with high fl-TFPI levels (p≤0.005 for all). An even stronger effect was seen in FVIII-inhibited blood/plasma: ROTEM clotting time was 26% shorter (p=0.01) and the ETP assessed by CAT was >2-fold higher in subjects with low fl-TFPI levels (p≤0.0001). Plasmatic TFPI is a major determinant of coagulation in global haemostatic tests particularly when FVIII is missing. Thus, inhibition of TFPI might be a promising novel treatment approach, especially in haemophilia patients with FVIII inhibitors.

1996 ◽  
Vol 75 (05) ◽  
pp. 796-800 ◽  
Author(s):  
Sanne Valentin ◽  
Inger Schousboe

SummaryIn the present study, the interaction between tissue factor pathway inhibitor (TFPI) and phospholipids has been characterized using a microtitre plate assay. TFPI was shown to bind calcium-independently to an acidic phospholipid surface composed of phosphatidylserine, but not a surface composed of the neutral phosphatidylcholine. The interaction was demonstrated to be dependent on the presence of the TFPI C-terminus. The presence of heparin (1 U/ml, unfractionated) was able to significantly reduce the binding of TFPI to phospholipid. The interaction of TFPI with phosphatidylserine was significantly decreased in the presence of calcium, but this was counteracted, and even enhanced, following complex formation of TFPI with factor Xa prior to incubation with the phospholipid surface. Moreover, a TFPI variant, not containing the third Kunitz domain and the C-terminus, was unable to bind to phospholipid. However, following the formation of a TFPI/factor Xa-complex this TFPI variant was capable of interacting with the phospholipid surface. This indicates that the role of factor Xa as a TFPI cofactor, at least in part, is to mediate the binding of TFPI to the phospholipid surface.


1993 ◽  
Vol 70 (03) ◽  
pp. 454-457 ◽  
Author(s):  
Claus Bregengaard ◽  
Ole Nordfang ◽  
Per Østergaard ◽  
Jens G L Petersen ◽  
Giorgio Meyn ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) is a feed back inhibitor of the initial activation of the extrinsic pathway of coagulation. In humans, injection of heparin results in a 2-6 fold increase in plasma TFPI and recent studies suggest that TFPI may be important for the anticoagulant activity of heparin. Full length (FL) TFPI, but not recombinant two-domain (2D) TFPI, has a poly cationic C-terminus showing very strong heparin binding. Therefore, we have investigated if heparin affects the pharmacokinetics of TFPI with and without this C-terminus.FL-TFPI (608 U/kg) and 2D-TFPI (337 U/kg) were injected intravenously in rabbits with and without simultaneous intravenous injections of low molecular weight heparin (450 anti-XaU/kg).Heparin decreased the volume of distribution and the clearance of FL-TFPI by a factor 10-15, whereas the pharmacokinetics of 2D-TFPI were unaffected by heparin. When heparin was administered 2 h following TFPI the recovery of FL-TFPI was similar to that found in the group receiving the two compounds simultaneously, suggesting that the releasable pool of FL-TFPI is removed very slowly in the absence of circulating heparin.


2017 ◽  
Vol 14 (2) ◽  
pp. 144-151 ◽  
Author(s):  
Vibeke Bratseth ◽  
Rune Byrkjeland ◽  
Ida U Njerve ◽  
Svein Solheim ◽  
Harald Arnesen ◽  
...  

We investigated the effects of 12-month exercise training on hypercoagulability in patients with combined type 2 diabetes mellitus and coronary artery disease. Associations with severity of disease were further explored. Patients ( n = 131) were randomized to exercise training or a control group. Blood was collected at inclusion and after 12 months. Tissue factor, free and total tissue factor pathway inhibitor, prothrombin fragment 1 + 2 (F1 + 2) and D-dimer were determined by enzyme-linked immunosorbent assay and ex vivo thrombin generation by the calibrated automated thrombogram assay. Tissue factor and ex vivo thrombin generation increased from baseline to 12 months ( p < 0.01, all), with no significant differences in changes between groups. At baseline, free and total tissue factor pathway inhibitor significantly correlated to fasting glucose ( p < 0.01, both) and HbA1c ( p < 0.05, both). In patients with albuminuria ( n = 34), these correlations were strengthened, and elevated levels of D-dimer, free and total tissue factor pathway inhibitor ( p < 0.01, all) and decreased ex vivo thrombin generation ( p < 0.05, all) were observed. These results show no effects of exercise training on markers of hypercoagulability in our population with combined type 2 diabetes mellitus and coronary artery disease. The association between poor glycaemic control and tissue factor pathway inhibitor might indicate increased endothelial activation. More pronounced hypercoagulability and increased tissue factor pathway inhibitor were demonstrated in patients with albuminuria.


2009 ◽  
Vol 101 (03) ◽  
pp. 471-477 ◽  
Author(s):  
Ingvild Agledahl ◽  
Johan Svartberg ◽  
Bjarne Hansen ◽  
Ellen Brodin

SummaryLow testosterone levels in men have been associated with cardiovascular risk factors, some prothrombotic factors, and lately also an increased risk of both cardiovascular disease and all-cause mortality. Experimental studies have shown increased synthesis and release of tissue factor pathway inhibitor (TFPI) by physiological levels of testosterone in endothelial cells. Our hypothesis was that elderly men with low testosterone levels would have lower plasma levels of plasma free TFPI with subsequent increased thrombin generation. Elderly men with low (n=37) and normal (n=41) testosterone levels were recruited from a general population, and tissue factor (TF)-induced thrombin generation ex vivo and plasma free TFPI Ag were measured. Elderly men with low testosterone levels had lower plasma free TFPI Ag (10.9 ± 2.3 ng/ml vs. 12.3 ± 3.0 ng/ml, p=0.027) and shorter initiation phase of TF-induced coagulation assessed by lag-time (5.1 ± 1.0 min vs. 5.7 ± 1.3, p=0.039). The differences between groups remained significant and were strengthened after adjustment for waist circumference and other cardiovascular risk factors. Lag-time increased linearly across quartiles of plasma free TFPI Ag (p<0.001). Multiple regression analysis revealed that total and free testosterone were independent predictors of plasma free TFPI Ag. Our findings suggest that low testosterone levels in elderly men is associated with low plasma free TFPI Ag and subsequent shortened initiation phase of TF-induced coagulation.


Haemophilia ◽  
2019 ◽  
Vol 25 (5) ◽  
pp. 797-806 ◽  
Author(s):  
Sunita Patel‐Hett ◽  
Erika J. Martin ◽  
Bassem M. Mohammed ◽  
Swapnil Rakhe ◽  
Pengling Sun ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4417-4417 ◽  
Author(s):  
Michael Palige ◽  
Christoph Redl ◽  
Sabine Knappe ◽  
Hartmut J. Ehrlich ◽  
Michael Dockal ◽  
...  

Abstract Abstract 4417 BAX513, a fucoidan derived from the brown seaweed Laminaria japonica, and other non-anticoagulant sulfated polysaccharides (NASPs) improve coagulation in hemophilic blood and plasma. Fucoidans are heterogeneous, polysulfated molecules with procoagulant activities in a wide concentration range. Tissue factor pathway inhibitor (TFPI) has been described as a potential target for the procoagulant activity of NASPs (Liu et al. Thromb Haemost 2006; 95:68). In the current study, we investigated the interaction of BAX513 with TFPI proteins to gain a detailed understanding of the mechanism of action of BAX513. We used calibrated automated thrombography to monitor the activity of BAX513 in normal, FX and TFPI-deficient plasma. TFPI plasma levels were varied by the addition of truncated TFPI (TFPI1-160) and TFPI-domain specific antibodies. Initiating thrombin generation by addition of FXa to plasma deficient in both, FX and FVIII-showed a BAX513-dose dependent increase of thrombin generation, which was completely abolished when TFPI-specific polyclonal antibodies were present. Furthermore, when full-length TFPI was inhibited in plasma and instead supplemented with increasing amounts of TFPI 1–160, BAX513 did not show any activity. The data are further supported by surface plasmon resonance experiments (BiaCore) exploring the BAX513-TFPI interaction. A high affinity interaction was only observed for BAX513 with full-length TFPI but not for BAX513 with TFPI1-160. Our findings support a mechanism of action in which BAX513 acts as a potent dose-dependent TFPI antagonist that requires the highly charged C-terminus of TFPI to unfold its full potential. Understanding the mechanism of action of BAX513 supports the development of BAX513 as a promising new therapeutic for hemophiliacs and FVIII-inhibitor patients. Disclosures: Palige: Baxter Innovations GmbH: Employment. Redl:Baxter Innovations GmbH: Employment. Knappe:Baxter Innovations GmbH: Employment. Ehrlich:Baxter Innovations GmbH: Employment. Dockal:Baxter Innovations GmbH: Employment. Scheiflinger:Baxter Innovations GmbH: Employment.


2015 ◽  
Vol 114 (07) ◽  
pp. 115-122 ◽  
Author(s):  
Cornelis van ’t Veer ◽  
Joris J. T. H. Roelofs ◽  
Joost C. M. Meijers ◽  
Marcus J. Schultz ◽  
George Broze Jr ◽  
...  

SummaryStreptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Coagulation and inflammation interact in the host response to infection. Tissue factor pathway inhibitor (TFPI) is a natural anticoagulant protein that inhibits tissue factor (TF), the main activator of inflammation-induced coagulation. It was the objective of this study to investigate the effect of endogenous TFPI levels on coagulation, inflammation and bacterial growth during S. pneumoniae pneumonia in mice. The effect of low endogenous TFPI levels was studied by administration of a neutralising anti-TFPI antibody to wild-type mice, and by using genetically modified mice expressing low levels of TFPI, due to a genetic deletion of the first Kunitz domain of TFPI (TFPIK1(-/-)) rescued with a human TFPI transgene. Pneumonia was induced by intranasal inoculation with S. pneumoniae and samples were obtained at 6, 24 and 48 hours after infection. Anti-TFPI reduced TFPI activity by ~50 %. Homozygous lowTFPI mice and heterozygous controls had ~10 % and ~50 % of normal TFPI activity, respectively. TFPI levels did not influence bacterial growth or dissemination. Whereas lung pathology was unaffected in all groups, mice with ~10 % (but not with ~50 %) of TFPI levels displayed elevated lung cytokine and chemokine concentrations 24 hours after infection. None of the groups with low TFPI levels showed an altered procoagulant response in lungs or plasma during pneumonia. These data argue against an important role for endogenous TFPI in the antibacterial, inflammatory and procoagulant response during pneumococcal pneumonia.


Sign in / Sign up

Export Citation Format

Share Document