Effect of Surface Modifications of Abutment Screws on Reverse Torque Values: An In Vitro Study

2020 ◽  
Vol 33 (4) ◽  
pp. 401-409
Author(s):  
Emine Colpak ◽  
Hasan Gumus
2017 ◽  
Vol 9 (5) ◽  
pp. 154
Author(s):  
R Ajay ◽  
K Suma ◽  
SeyedAsharaf Ali ◽  
JambaiSampath Kumar Sivakumar ◽  
V Rakshagan ◽  
...  

Author(s):  
Arda Ozdiler ◽  
suleyman dayan ◽  
Burc Gencel ◽  
Gulbahar Isık-Ozkol

This in vitro study evaluated the influence of taper angles on the internal conical connections of implant systems and of the application of chlorhexidine gel as an antibacterial agent or a polyvinyl siloxane (PVS) sealant on the reverse torque values of abutment screws after dynamic loading. The current study tested four implant systems with different taper angles (5.4°, 12°, 45°, and 60°). Specimens were divided into three groups: control (neither chlorhexidine gel filled nor silicone sealed), 2% chlorhexidine gel-filled or silicone-sealed group, and group subjected to a dynamic load of 50 N at 1 Hz for 500,000 cycles prior to reverse torque measurements. Quantitative positive correlation was observed between the taper angle degree and the percentage of tightening torque loss. However, this correlation was significant only for the 60° connection groups except in the group in which a sealant was applied ( p = 0.013 for the control group, p = 0.007 for the chlorhexidine group). Percentages of decrease in the torque values of the specimens with silicone sealant application were significantly higher compared with both the control and chlorhexidine groups ( p = 0.001, p = 0.002, p = 0.001, and p = 0.002, respectively, according to the increasing taper angles); the percentage of decrease in torque values due to chlorhexidine application was statistically insignificant when compared with the control group. The application of gel-form chlorhexidine as an antibacterial agent does not significantly affect the stability of the implant–abutment connection under dynamic loads. PVS sealants may cause screw loosening under functional loads.


2021 ◽  
pp. 1-12
Author(s):  
Sergio Alexandre Gehrke ◽  
Berenice Anina Dedavid ◽  
José Manuel Granero Marín ◽  
Luigi Canullo

BACKGROUND: During the masticatory cycle, loads of different intensities and directions are received by the dental structures and/or implants, which can cause micromovements at the junction between the abutment and implant. OBJECTIVE: The objective of this in vitro study was to evaluate the behavior of three different implant connections subjected to different load values using a digital radiography system. Additionally, the torque values for removing the abutment screws were also measured and compared. METHODS: Ninety sets of implant and abutment (IA) were used, divided into three groups according to the type of connection (n = 30 per group): EH group, external hexagon type connection; IH group, internal hexagon connection; and, MT group, Morse taper connection. RESULTS: MT group showed the better vertical misfit behavior at the three intensity of load applied, in comparison with EH and IH groups. In the analysis of torque maintenance (detorque test), MT group showed higher values of detorque when compared with the measured values of EH and IH groups (p < 0.001). CONCLUSIONS: The IA sets of EH and IH groups showed a microgap in all levels of applied loads, unlike the MT group this event was not observed. In the detorque test, MT group increase in the torque values when compared to the initial torque applied, unlike EH and IH groups showed a decrease in the initially torque applied in all conditions tested. A positive correlation was detected between the misfit and detorque values.


Author(s):  
Ezio Bruna ◽  
Andrea Fabianelli ◽  
Giacomo Mastriforti ◽  
Federica Papacchini

2002 ◽  
Vol 13 (3) ◽  
pp. 179-183 ◽  
Author(s):  
Marcelo Giannini ◽  
Luis Alexandre Maffei Sartini Paulillo ◽  
Gláucia Maria Bovi Ambrosano

The objective of this in vitro study was to evaluate the effect of three surface treatments and two adhesive systems on the shear bond strength of old and freshly placed amalgam. The results suggested that the intact amalgam showed a significantly higher strength than repaired groups and the strongest repaired specimens were made when the amalgam surfaces were roughened with a diamond bur or microetcher. The adhesive systems showed no significant differences on bond strength with the same superficial texture.


Sign in / Sign up

Export Citation Format

Share Document