scholarly journals Correlation of angiographic estimates of myocardial infarct size and accumulated release of creatine kinase MB isoenzyme in man.

Circulation ◽  
1977 ◽  
Vol 56 (2) ◽  
pp. 199-205 ◽  
Author(s):  
W J Rogers ◽  
H G McDaniel ◽  
L R Smith ◽  
J A Mantle ◽  
R O Russel ◽  
...  
1985 ◽  
Vol 109 (6) ◽  
pp. 1238-1243 ◽  
Author(s):  
Tetsuo Shibata ◽  
Hidekazu Hashimoto ◽  
Takayuki Ito ◽  
Kouichi Ogawa ◽  
Tatsuo Satake ◽  
...  

2017 ◽  
Vol 43 (3) ◽  
pp. 1140-1151 ◽  
Author(s):  
Sumin Gao ◽  
Leyun Zhan ◽  
Zhengchao Yang ◽  
Ruili Shi ◽  
Haobo Li ◽  
...  

Background: This study aimed to evaluate the protective effect and mechanisms of remote limb ischaemic postconditioning (RIPostC) against myocardial ischaemia/reperfusion (IR) injury. Methods: Male mice underwent 45 min of coronary artery occlusion followed by 2 h of reperfusion. RIPostC was achieved by three cycles of 5 min of ischaemia and 5 min of reperfusion in the left hind limb at the start of the reperfusion period. After 2 h of cardiac reperfusion, myocardial infarct size, cardiac enzyme release, apoptosis and oxidative stress were assessed. Protein expression and phosphorylation were measured by Western blotting. Results: RIPostC significantly decreased cardiac IR injury, as reflected by reduced infarct size and cellular apoptosis (22.9 ± 3.3% vs 40.9 ± 6.2% and 13.4% ± 3.1% vs 26.2% ± 3.1%, respectively, both P < 0.01) as well as plasma creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) release (21.97 ± 4.08 vs 35.86 ± 2.91 ng/ml and 6.17 ± 0.58 vs 8.37 ± 0.89 U/ml, respectively, both P < 0.01) compared with the IR group. RIPostC significantly increased the phosphorylation of myocardial STAT3, Akt and eNOS (P < 0.01). In addition, RIPostC elevated the nuclear translocation of Nrf2 and the expression of HO-1 and reduced myocardial oxidative stress (P < 0.05). Interestingly, pretreatment with the JAK/STAT3 inhibitor AG490 blocked the cardioprotective effect of RIPostC accompanied by decreased phosphorylation of myocardial STAT3, Akt and eNOS (P < 0.05), decreased nuclear translocation of Nrf2 and expression of HO-1, as well as increased oxidative stress (P < 0.05). Conclusion: RIPostC attenuates apoptosis and protects against myocardial IR injury, possibly through the activation of JAK/STAT3-mediated Nrf2-antioxidant signalling.


1978 ◽  
Vol 61 (4) ◽  
pp. 1048-1056 ◽  
Author(s):  
Stephen F. Vatner ◽  
Hank Baig ◽  
W. Thomas Manders ◽  
Peter R. Maroko

1983 ◽  
Vol 51 (8) ◽  
pp. 1294-1300 ◽  
Author(s):  
Janet L. Smith ◽  
H.Dieter Ambos ◽  
Herman K. Gold ◽  
James E. Muller ◽  
W.Kenneth Poole ◽  
...  

2018 ◽  
Vol 24 (4) ◽  
pp. 273-279
Author(s):  
Afshin Nazari ◽  
Khadige Zahabi ◽  
Yaser Azizi ◽  
Maryam Moghimian

ABSTRACT Exercise and apelin have been shown to increase cardiac function and elicit tolerance to ischemia/reperfusion (IR) injuries. This study aimed at determining whether the combination of exercise training and apelin pretreatment could integrate the protective effects of each of them in the heart against IR injury. Male rats were divided into four experimental groups: 1: Rats with ischemia/reperfusion (IR), 2: subjected to exercise training for 8 weeks (EX+IR), 3: apelin-13 (10 nmol/kg/day) for 7 days (Apel+IR) in the last week of training, and 4: exercise training plus apelin-13 (EX+Apel+IR). Isolated hearts were perfused using the Langendorff method and subjected to 30 min of regional ischemia followed by 60 min of reperfusion. Treadmill exercise training was conducted for 8 weeks. Hemodynamic parameters were recorded throughout the experiment. Ischemia-induced arrhythmias, myocardial infarct size (IS), creatine kinase-MB (CK-MB) isoenzyme and plasma lactate dehydrogenase (LDH) activity was measured in all animals. Administration of apelin-13 plus exercise increased left ventricular developed pressure (LVDP) at the end of ischemia and reperfusion compared with other groups. After 30 min of ischemia, dP/dtmax was higher in EX+Apel+IR than in Apel+IR and EX+IR groups. During 30 min ischemia, exercise training, apelin-13 and combined treatment produced a significant reduction in the numbers of premature ventricular complexes. A combination of exercise and apelin-13 also reduced infarct size, CK-MB, LDH and severity of arrhythmia. These results suggest that combined therapies with apelin-13 and exercise training may integrate the beneficial effects of each of them alone on cardiac contractility, arrhythmia and limiting of infarct size. Level of evidence I; Therapeutic Studies - Investigating the Results of Treatment.


Sign in / Sign up

Export Citation Format

Share Document