scholarly journals EFFECTS OF EXERCISE COMBINED WITH APELIN-13 ON CARDIAC FUNCTION IN THE ISOLATED RAT HEART

2018 ◽  
Vol 24 (4) ◽  
pp. 273-279
Author(s):  
Afshin Nazari ◽  
Khadige Zahabi ◽  
Yaser Azizi ◽  
Maryam Moghimian

ABSTRACT Exercise and apelin have been shown to increase cardiac function and elicit tolerance to ischemia/reperfusion (IR) injuries. This study aimed at determining whether the combination of exercise training and apelin pretreatment could integrate the protective effects of each of them in the heart against IR injury. Male rats were divided into four experimental groups: 1: Rats with ischemia/reperfusion (IR), 2: subjected to exercise training for 8 weeks (EX+IR), 3: apelin-13 (10 nmol/kg/day) for 7 days (Apel+IR) in the last week of training, and 4: exercise training plus apelin-13 (EX+Apel+IR). Isolated hearts were perfused using the Langendorff method and subjected to 30 min of regional ischemia followed by 60 min of reperfusion. Treadmill exercise training was conducted for 8 weeks. Hemodynamic parameters were recorded throughout the experiment. Ischemia-induced arrhythmias, myocardial infarct size (IS), creatine kinase-MB (CK-MB) isoenzyme and plasma lactate dehydrogenase (LDH) activity was measured in all animals. Administration of apelin-13 plus exercise increased left ventricular developed pressure (LVDP) at the end of ischemia and reperfusion compared with other groups. After 30 min of ischemia, dP/dtmax was higher in EX+Apel+IR than in Apel+IR and EX+IR groups. During 30 min ischemia, exercise training, apelin-13 and combined treatment produced a significant reduction in the numbers of premature ventricular complexes. A combination of exercise and apelin-13 also reduced infarct size, CK-MB, LDH and severity of arrhythmia. These results suggest that combined therapies with apelin-13 and exercise training may integrate the beneficial effects of each of them alone on cardiac contractility, arrhythmia and limiting of infarct size. Level of evidence I; Therapeutic Studies - Investigating the Results of Treatment.

2015 ◽  
Vol 35 (2) ◽  
pp. 676-688 ◽  
Author(s):  
Xiaoming Wang ◽  
Yanan Cao ◽  
Mingzhi Shen ◽  
Bo Wang ◽  
Weiwei Zhang ◽  
...  

Background/Aims: Anion channels such as chloride channel are known to participate in the regulation of a wide variety of cellular processes including development, differentiation, proliferation, apoptosis and regeneration. This study was designed to examine the effect of the non-selective anion channel blocker 4,4'-Diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS) on cardiac function and apoptosis using a rat model of ischemia/reperfusion (I/R). Methods: Fifty male SD rats were randomly divided into the following groups including sham, I/R and I/R+DIDS (7, 14 or 28 mg/kg). In DIDS group, rats received DIDS treatment (4 ml/kg/hr) at the beginning of reperfusion for 2 hrs using a programmed micro-pump. Cardiac function was evaluated including left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP) as well as positive and negative maximal derivatives of left ventricular pressure (± dP/dtmax). Myocardial infarct size was detected using the double staining with 2, 3, 5-triphenyl-2H-tetra-zolium chloride (TTC) and Evan's blue dye. DNA ladder, TUNEL assay, Bax and Bcl-2 protein levels were evaluated. Levels of ROS and Akt phosphorylation were detected. Results: I/R injury compromised cardiac function as manifested by reduced LVSP and ± dP/dtmax as well as pronounced apoptosis. I/R-induced cardiac anomalies were markedly ameliorated by DIDS. DIDS retarded I/R-induced myocardial infarct and apoptosis. In addition, DIDS ameliorated I/R-induced ROS production and Akt dephosphorylation in the heart. Conclusion: Taken together, our data revealed that DIDS may protect cardiomyocytes against I/R injury as evidenced by improved cardiac function, Bcl-2, Akt phosphorylation, and reduced myocardial apoptosis, Bax expression, ROS production and myocardial infarct size.


Author(s):  
Alexander B Veitinger ◽  
Audrey Komguem ◽  
Lena Assling-Simon ◽  
Martina Heep ◽  
Julia Schipke ◽  
...  

Abstract OBJECTIVES Esmolol-based cardioplegic arrest offers better cardioprotection than crystalloid cardioplegia but has been compared experimentally with blood cardioplegia only once. We investigated the influence of esmolol crystalloid cardioplegia (ECCP), esmolol blood cardioplegia (EBCP) and Calafiore blood cardioplegia (Cala) on cardiac function, metabolism and infarct size in non-infarcted and infarcted isolated rat hearts. METHODS Two studies were performed: (i) the hearts were subjected to a 90-min cardioplegic arrest with ECCP, EBCP or Cala and (ii) a regional myocardial infarction was created 30 min before a 90-min cardioplegic arrest. Left ventricular peak developed pressure (LVpdP), velocity of contractility (dLVP/dtmax), velocity of relaxation over time (dLVP/dtmin), heart rate and coronary flow were recorded. In addition, the metabolic parameters were analysed. The infarct size was determined by planimetry, and the myocardial damage was determined by electron microscopy. RESULTS In non-infarcted hearts, cardiac function was better preserved with ECCP than with EBCP or Cala relative to baseline values (LVpdP: 100 ± 28% vs 86 ± 11% vs 57 ± 7%; P = 0.002). Infarcted hearts showed similar haemodynamic recovery for ECCP, EBCP and Cala (LVpdP: 85 ± 46% vs 89 ± 55% vs 56 ± 26%; P = 0.30). The lactate production with EBCP was lower than with ECCP (0.6 ± 0.7 vs 1.4 ± 0.5 μmol/min; P = 0.017). The myocardial infarct size and (ECCP vs EBCP vs Cala: 16 ± 7% vs 15 ± 9% vs 24 ± 13%; P = 0.21) the ultrastructural preservation was similar in all groups. CONCLUSIONS In non-infarcted rat hearts, esmolol-based cardioplegia, particularly ECCP, offers better myocardial protection than Calafiore. After an acute myocardial infarction, cardioprotection with esmolol-based cardioplegia is similar to that with Calafiore.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Navin K Kapur ◽  
Vikram Paruchuri ◽  
Xiaoying Qiao ◽  
Kevin Morine ◽  
Wajih Syed ◽  
...  

Management of an acute myocardial infarction (AMI) focuses on restoring oxygen supply to limit myocardial damage, however ischemia-reperfusion injury (IRI) remains a major determinant of mortality in AMI. No studies have targeted initially reducing left ventricular stroke work (LVSW) to limit IRI in AMI. The Impella CP axial-flow pump reduces LVSW. We tested the hypothesis that first reducing myocardial work and delaying coronary reperfusion reduces infarct size by activating cardioprotective signaling pathways. Methods: AMI was induced by occlusion of the left anterior descending artery (LAD) via angioplasty for 90 minutes in 50kg male Yorkshire swine (n=5/group). In Group 1, the LAD was reperfused for 120 minutes. In Group 2, after 90 minutes of ischemia the Impella CP device was activated and the LAD left occluded for an additional 60 minutes (150 minutes of LAD occlusion total), followed by 120 minutes of reperfusion. The Impella CP was active throughout reperfusion. Western blot analysis quantified myocardial kinase activity. Results: Compared to Group 1, Group 2 had a reduced LVSW, LV end-diastolic volume and end-diastolic pressure after reperfusion [Fig A]. Group 2 showed increased myocardial phosphorylation of cardioprotective kinases: AKT, ERK, GSK3β and STAT-3 [Fig B]. Compared to Group 1, the percent myocardial infarct size normalized to the area at risk (AAR) was reduced in Group 2 (73+13% vs 42+15%, p=0.02). Conclusion: We report the potential benefit of primarily unloading the heart and delaying coronary reperfusion to salvage myocardium in AMI. This is the first report to examine the impact of the Impella CP on cardioprotective signaling in the heart.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yuri Dmitriev ◽  
Sarkis Minasian ◽  
Anna Dracheva ◽  
Andrey Karpov ◽  
Svetlana Chefu ◽  
...  

Background: Reduction of irreversible myocardial ischemia-reperfusion injury (IRI) remains important. One of the promising strategies aimed at myocardial IRI alleviation is modulation of programmed cell death (PCD) pathways. PCD mode displaying morphological characteristics of necrosis, and amenable to pharmacological manipulation is referred to as necroptosis. Necroptosis inhibitor necrostatin-1 has been shown to exert cardio- and neuroprotective effects. In the present work, the effect of necrostatin-7 (Nec-7) on myocardial injury in the rat model of permanent coronary occlusion was studied. Methods: Male Wistar rats (n = 19) were anesthetized with pentobarbital. The animals were subjected to permanent coronary occlusion (PCO) and intraperitoneal (i.p.) Nec-7 administration 1 h prior to PCO at a dose of 14.5 mg/kg in dimethyl sulfoxide (DMSO) or DMSO alone at a dose of 3.1 g/kg. Control rats were treated with saline. Three weeks after PCO, serum levels of NT-proBNP were measured, and histological outcomes were assessed. The infarct size (IS, %) and infarct length (IL, mm) were analyzed morphometrically. Results: DMSO caused significant reduction in serum NT-proBNP level vs. Control (0.3 ± 0.19 vs. 0.5 ± 0.22 ng/ml, p = 0.001), while Nec-7 further decreased NT-proBNP level in comparison with DMSO (0.2 ± 0.14 ng/ml, p = 0.008 vs. DMSO). Compared with Control, DMSO reduced adverse left ventricular remodeling, as evidenced by reduction in IS (16.0 ± 2.92 and 12.9 ± 1.72%, p = 0.015) and IL (6.2 ± 0.89 and 3.8 ± 0.35 mm, p = 0.008). Nec-7 treatment resulted in additional reduction of both IS and IL vs. DMSO group (9.0 ± 4.91 % and 2.9 ± 1.62 mm, respectively; p = 0.013 and p = 0.011 vs. DMSO, respectively). Conclusion: Nec-7 has cardioprotective properties, reducing myocardial wall stress and myocardial remodeling in the rat model of myocardial infarction.


2005 ◽  
Vol 288 (3) ◽  
pp. H1252-H1256 ◽  
Author(s):  
Steen B. Kristiansen ◽  
Ole Henning ◽  
Rajesh K. Kharbanda ◽  
Jens Erik Nielsen-Kudsk ◽  
Michael Rahbek Schmidt ◽  
...  

Local and remote ischemic preconditioning (IPC) reduce ischemia-reperfusion (I/R) injury and preserve cardiac function. In this study, we tested the hypothesis that remote preconditioning is memorized by the explanted heart and yields protection from subsequent I/R injury and that the underlying mechanism involves sarcolemmal and mitochondrial ATP-sensitive K+ (KATP) channels. Male Wistar rats (300–350 g) were randomized to a control ( n = 10), a remote IPC ( n = 10), and a local IPC group ( n = 10). Remote IPC was induced by four cycles of 5 min of limb ischemia, followed by 5 min of reperfusion. Local IPC was induced by four cycles of 2 min of regional myocardial ischemia, followed by 3 min of reperfusion. The heart was excised within 5 min after the final cycle of preconditioning, mounted in a perfused Langendorff preparation for 40 min of stabilization, and subjected to 45 min of sustained ischemia by occluding the left coronary artery and 120 min of reperfusion. I/R injury was assessed as infarct size by triphenyltetrazolium staining. The influence of sarcolemmal and mitochondrial KATP channels on remote preconditioning was assessed by the addition of glibenclamide (10 μM, a nonselective KATP blocker), 5-hydroxydecanoic acid (5-HD; 100 μM, a mitochondrial KATP blocker), and HMR-1098 (30 μM, a sarcolemmal KATP blocker) to the Langendorff preparation before I/R. The role of mitochondrial KATP channels as an effector mechanism for memorizing remote preconditioning was further studied by the effect of the specific mitochondrial KATP activator diaxozide (10 mg/kg) on myocardial infarct size. Remote preconditioning reduced I/R injury in the explanted heart (0.17 ± 0.03 vs. 0.39 ± 0.05, P < 0.05) and improved left ventricular function during reperfusion compared with control ( P < 0.05). Similar effects were obtained with diazoxide. Remote preconditioning was abolished by the addition of 5-HD and glibenclamide but not by HMR-1098. In conclusion, the protective effect of remote preconditioning is memorized in the explanted heart by a mechanism that involves mitochondrial KATP channels.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Dong Wang ◽  
Xin Guo ◽  
Mingjie Zhou ◽  
Jichun Han ◽  
Bo Han ◽  
...  

This study was conducted to evaluate the cardioprotective property of the aqueous extract of lavender flower (LFAE). The myocardial ischemia/reperfusion (I/R) injury of rat was prepared by Langendorff retrograde perfusion technology. The heart was preperfused with K-H solution containing LFAE for 10 min before 20 minutes global ischemia, and then the reperfusion with K-H solution was conducted for 45 min. The left ventricular developed pressure (LVDP) and the maximum up/downrate of left ventricular pressure (±dp/dtmax) were recorded by physiological recorder as the myocardial function and the myocardial infarct size was detected by TTC staining. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities in the effluent were measured to determine the myocardial injury degree. The superoxide anion dismutase (SOD) and malondialdehyde (MDA) in myocardial tissue were detected to determine the oxidative stress degree. The results showed that the pretreatment with LFAE significantly decreased the myocardial infarct size and also decreased the LDH, CK activities, and MDA level, while it increased the LVDP, ±dp/dtmax, SOD activities, and the coronary artery flow. Our findings indicated that LFAE could provide protection for heart against the I/R injury which may be related to the improvement of myocardial oxidative stress states.


2006 ◽  
Vol 290 (6) ◽  
pp. H2644-H2647 ◽  
Author(s):  
Micah S. Johnson ◽  
Russell L. Moore ◽  
David A. Brown

This study was conducted to examine the relationship between myocardial ATP-sensitive potassium (KATP) channels and sex differences in myocardial infarct size after in vitro ischemia-reperfusion (I/R). Hearts from adult male and female Sprague-Dawley rats were excised and exposed to an I/R protocol (1 h of ischemia, followed by 2 h of reperfusion) on a modified Langendorff apparatus. Hearts from female rats showed significantly smaller infarct sizes than hearts from males (23 ± 4 vs. 40 ± 5% of the zone at risk, respectively; P < 0.05). Administration of HMR-1098, a sarcolemmal KATP channel blocker, abolished the sex difference in infarct size (42 ± 4 vs. 45 ± 5% of the zone at risk in hearts from female and male rats, respectively; P = not significant). Further experiments showed that blocking the KATP channels in ischemia, and not reperfusion, was sufficient to increase infarct size in female rats. These data demonstrate that sarcolemmal KATP channels are centrally involved in mechanisms that underlie sex differences in the susceptibility of the intact heart to I/R injury.


2018 ◽  
Vol 49 (4) ◽  
pp. 1646-1658 ◽  
Author(s):  
Xiaoyan Huang ◽  
Yuguang Wang ◽  
Yi Wang ◽  
Liang Yang ◽  
Jia Wang ◽  
...  

Background/Aims: Epoxyeicosatrienoic acids (EETs) are cytochrome P450 epoxygenase (CYP) metabolites of arachidonic acid and have multiple cardiovascular effects. Ophiopogonin D (OP-D) is an important effective monomeric component in Shenmai injection (SM-I). Both have been reported to have a variety of biological functions, including anti-inflammatory, anti-oxidant, and anti-apoptotic effects. We previously demonstrated that OP-D–mediated cardioprotection involves activation of CYP2J2/3 and enhancement of circulating EETs levels in vitro and can be developed as a novel drug for the therapy of myocardial ischemia-reperfusion (MI/R) injury. We therefore hypothesized that the protective effects of OP-D and SM-I against MI/R injury are associated with increased expression of CYP2J3 and enhanced circulating 11,12-EET levels in vivo. Methods: A rat model of MI/R injury was generated by ligation of the left anterior descending coronary artery for 40 min, followed by reperfusion for 2 h to determine the protective effects and potential mechanisms of OP-D and SM-I. Electrocardiogram and ultrasonic cardiogram were used to evaluate cardiac function; 2,3,5-triphenyltetrazolium chloride was used to measure myocardial infarct size; hematoxylin and eosin staining and transmission electron microscopy were used to observe the morphology of myocardial tissue; and the expression of related proteins in the mechanistic study was observed by western blot analysis. Results: We found that OP-D and SM-I exert protective effects on MI/R injury, including regulation of cardiac function, reduction of lactate dehydrogenase and creatine kinase production, attenuation of myocardial infarct size, and improvement of the recovery of damaged myocardial structures. We found that OP-D and SM-I activate CYP2J3 expression and increase levels of circulating 11,12-EET in MI/R-injured rats. Conclusion: We tested the hypothesis that the cardioprotective effects of OP-D and SM-I on MI/R injury are associated with increased expression of CYP2J3 and enhanced circulating 11,12-EET levels in rats. Taken together, our results show that the effects of OP-D and SM-I were also mediated by the activation of the PI3K/Akt/eNOS signaling pathway, while inhibition of the NF-κB signaling pathway and antioxidant and anti-apoptotic effects were involved in the cardioprotective effects of OP-D and SM-I.


Sign in / Sign up

Export Citation Format

Share Document