Role of the Pulmonary Circulation in the Distribution of Human Fetal Cardiac Output During the Second Half of Pregnancy

Circulation ◽  
1996 ◽  
Vol 94 (5) ◽  
pp. 1068-1073 ◽  
Author(s):  
Juha Rasanen ◽  
Dennis C. Wood ◽  
Stuart Weiner ◽  
Abraham Ludomirski ◽  
James C. Huhta
Author(s):  
Gandhi M. ◽  
Swaminathan S.

Ghrelin as human natural hormones is involved in fundamental regulatory process of eating and energy balance. It is a stomach derived hormone that acts as at the ghrelin receptor in multiple tissues throughout to the body. Its properties includes increasing appetite, decreasing systemic inflammation, decreasing vascular resistance ,increasing cardiac output, increasing glucose and IGF-1 levels, Hence it may play a significant role in Diabetes mellitus. Many studies have linked ghrelin to obesity and this paper is an attempt to bring out recent findings on the role of ghrelin in Diabetes Mellitus, particularly type2 Diabetes mellitus.


1994 ◽  
Vol 267 (1) ◽  
pp. R84-R88 ◽  
Author(s):  
M. Huang ◽  
M. L. Leblanc ◽  
R. L. Hester

The study tested the hypothesis that the increase in blood pressure and decrease in cardiac output after nitric oxide (NO) synthase inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) was partially mediated by a neurogenic mechanism. Rats were anesthetized with Inactin (thiobutabarbital), and a control blood pressure was measured for 30 min. Cardiac output and tissue flows were measured with radioactive microspheres. All measurements of pressure and flows were made before and after NO synthase inhibition (20 mg/kg L-NAME) in a group of control animals and in a second group of animals in which the autonomic nervous system was blocked by 20 mg/kg hexamethonium. In this group of animals, an intravenous infusion of norepinephrine (20-140 ng/min) was used to maintain normal blood pressure. L-NAME treatment resulted in a significant increase in mean arterial pressure in both groups. L-NAME treatment decreased cardiac output approximately 50% in both the intact and autonomic blocked animals (P < 0.05). Autonomic blockade alone had no effect on tissue flows. L-NAME treatment caused a significant decrease in renal, hepatic artery, stomach, intestinal, and testicular blood flow in both groups. These results demonstrate that the increase in blood pressure and decreases in cardiac output and tissue flows after L-NAME treatment are not dependent on a neurogenic mechanism.


1957 ◽  
Vol 191 (2) ◽  
pp. 283-286 ◽  
Author(s):  
John C. Rose ◽  
Edward D. Freis

A diaphragm pump of controlled constant output was substituted for the left ventricle in dogs. Left auricular blood was conducted to a reservoir, from which it was pumped into the thoracic aorta. Left ventricular by-pass was complete. Alterations in total vascular volume were continually monitored by observation of the pump reservoir level. Sympathetic blockade (hexamethonium) increased total vascular volume (mean 15%). This resulted in decreased venous return and decreased right ventricular output. Norepinephrine constricted the total vasculature and decreased vascular volume (mean 12%). This resulted in increased venous return and cardiac output. These experiments demonstrated the complex integrated responses of the total circulation to sympathetic vasomotor activity. The role of the sympathetic nervous system not only in the regulation of arteriolar tone and cardiac activity but also in adjusting total vascular volume and venous return was emphasized. Venous return, and hence cardiac output alterations accompanying systemic vasomotor activity can only be detected by continuous methods of flow measurement.


1983 ◽  
Vol 4 (2) ◽  
pp. 111-126
Author(s):  
J.T. Sylvester ◽  
H.S. Goldberg ◽  
S. Permutt
Keyword(s):  

1975 ◽  
Vol 39 (1) ◽  
pp. 47-53 ◽  
Author(s):  
J. A. Loeppky ◽  
U. C. Luft

To clarify the role of O2 stores in the fluctuations in VO2 observed with changing posture, O2 intake (Veo2) and pulmonary capillary O2 transfer (Vpco2) were calculated breath by breath with a box-balloon sprometer and mass spectrometer. Changes in O2 stores of the lungs (O2L) and blood (O2b) were computed assuming metabolic rate (Vco2) constant (O2L = Veo2 - Vpco2; O2b = Vpco2 - Vco2). Measurements were made before, during, and after passive tilt to 60 degrees and on return to recumbency after 10 min erect. From supine to upright O2L increased rapidly and O2b dropped slowly, creating a net deficit in Veo2 of 130 ml in 10 min. Return to supine caused rapid loss in O2L and gain in O2b with a net Veo2 excess of 117 ml. Shifts in O2b were 2.5 times greater but opposite to shifts in O2L. Changes in O2b result from shifts in blood volume and flow more than from changes in cardiac output. Refilling of O2b, matching loss while upright, caused transient hypoxia with significant hyperpnea.


1991 ◽  
Vol 261 (3) ◽  
pp. R677-R685 ◽  
Author(s):  
B. L. Brizzee ◽  
R. D. Russ ◽  
B. R. Walker

Experiments were performed to examine the potential role of circulating arginine vasopressin (AVP) on baroreflex sensitivity during hypotensive and nonhypotensive hemorrhage in the conscious rat. Animals were chronically instrumented for measurement of cardiac output, blood pressure, and heart rate (HR). Three potential stimuli for release of AVP were utilized: 1) rapid 20% arterial hemorrhage that resulted in hypotension, 2) nonhypovolemic hypotension induced by intravenous infusion of nitroprusside, and 3) nonhypotensive hemorrhage (rapid 10% arterial blood withdrawal). Hypotensive hemorrhage was associated with significant reductions in blood pressure, cardiac output, HR, and calculated total peripheral resistance, an increase in baroreflex (BRR) bradycardia in response to pressor infusions of phenylephrine, and a moderate elevation in circulating AVP. Prior intravenous administration of a specific V1-vasopressinergic antagonist augmented the hypotensive response to hemorrhage; however, neither V1- nor V2-blockade affected hemorrhage-induced augmentation of the BRR. Inducement of hypotension by infusion of nitroprusside did not alter subsequent BRR sensitivity. Finally, nonhypotensive hemorrhage was associated with an increase in resting HR and augmented BRR sensitivity. However, in contrast to hypotensive hemorrhage, either V1- or V2-antagonism attenuated the increase in BRR sensitivity seen with 10% hemorrhage. These data suggest that, although AVP may play a role in blood pressure maintenance via its direct vasoconstrictor actions during hypotensive hemorrhage, the observed augmentation of BRR sensitivity associated with severe blood loss is not attributable to a vasopressinergic mechanism activated by circulating AVP. However, blood-borne AVP may contribute to BRR sensitivity alterations in response to mild blood loss.


1958 ◽  
Vol 192 (2) ◽  
pp. 331-334 ◽  
Author(s):  
Henry Badeer ◽  
Avedis Khachadurian

The relative influence of bradycardia and of cold per se on the oxygen consumption and mechanical efficiency of the dog heart was investigated in the modified heart-lung preparation (11 experiments). Myocardial oxygen uptake was determined under constant arterial pressure and cardiac output in a) normothermia, b) normothermia with bradycardia induced by a cold thermode on the pacemaker, and c) hypothermia producing the same bradycardia as in ( b). At 36.8°C with a rate of 153 beats/min. the efficiency was 8.5% ± 0.3(S.E.), whereas with a rate of 110/min. efficiency was 9.1% ± 0.4(S.E.), a change that is statistically not significant. In hypothermia of 31.5°C with a rate of 110/min. the efficiency was 10.8% ± 0.3(S.E.), an increase that is statistically significant. Performing the same stroke work the hypothermic myocardium consumed less oxygen than the normothermic. It is concluded that the metabolic effect of cold per se is the chief factor responsible for increasing the mechanical efficiency of the hypothermic heart when pressure-volume work is kept constant.


1986 ◽  
Vol 4 (2) ◽  
pp. 333-348 ◽  
Author(s):  
J.T. Sylvester ◽  
H.S. Goldberg ◽  
S. Permutt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document