scholarly journals Thromboxane A 2 Receptor Signaling Inhibits Vascular Endothelial Growth Factor–Induced Endothelial Cell Differentiation and Migration

2004 ◽  
Vol 95 (4) ◽  
pp. 372-379 ◽  
Author(s):  
Anthony W. Ashton ◽  
J. Anthony Ware
1999 ◽  
Vol 10 (10) ◽  
pp. 2125-2134
Author(s):  
ALDA TUFRO ◽  
VICTORIA F. NORWOOD ◽  
ROBERT M. CAREY ◽  
R. ARIEL GOMEZ

Abstract. The expression of vascular endothelial growth factor (VEGF) and its receptors Flt-1 and Flk-1 in the rat kidney was examined during ontogeny using Northern blot analysis and immunocytochemistry. In prevascular embryonic kidneys (embryonic day 14 [E14]), immunoreactive Flt-1 and Flk-1 were observed in isolated angioblasts, whereas VEGF was not detected. Angioblasts aligned forming cords before morphologically differentiating into endothelial cells. In late fetal kidneys (E19), immunoreactive VEGF was detected in glomerular epithelial and tubular cells, whereas Flt-1 and Flk-1 were expressed in contiguous endothelial cells. To determine whether VEGF induces endothelial cell differentiation and vascular development in the kidney, the effect of recombinant human VEGF (5 ng/ml) was examined on rat metanephric organ culture, a model known to recapitulate nephrogenesis in the absence of vessels. After 6 d in culture in serum-free, defined media, metanephric kidney growth and morphology were assessed. DNA content was higher in VEGF-treated explants (1.9 ± 0.17 μg/kidney, n = 9) than in paired control explants (1.4 ± 0.10 μg/kidney, n = 9) (P < 0.05). VEGF induced proliferation of tubular epithelial cells, as indicated by an increased number of tubules and tubular proliferating cell nuclear antigen-containing cells. VEGF induced upregulation of Flk-1 and Flt-1 expression, as assessed by Western blot analysis. Developing endothelial cells were identified and localized using immunocytochemistry and electron microscopy. Flt-1, Flk-1, and angiotensin-converting enzyme-containing cells were detected in VEGF-treated explants, whereas control explants were negative. These studies confirmed previous reports indicating that the expression of VEGF and its receptors is temporally and spatially associated with kidney vascularization and identified angioblasts expressing Flt-1 and Flk-1 in prevascular embryonic kidneys. The data indicate that VEGF expression is downregulated in standard culture conditions and that VEGF stimulates growth of embryonic kidney explants by expanding both endothelium and epithelium, resulting in vasculogenesis and enhanced tubulogenesis. These data suggest that VEGF plays a critical role in renal development by promoting endothelial cell differentiation, capillary formation, and proliferation of tubular epithelia.


2020 ◽  
Author(s):  
Krutika Patil ◽  
Indira Hinduja ◽  
Srabani Mukherjee

Abstract STUDY QUESTION Is angiogenic potential of follicular fluid (FF) and granulosa-lutein cells (GLCs) altered in polycystic ovary syndrome (PCOS) and does it play a role in corpus luteum (CL) defect observed in them? SUMMARY ANSWER FF and GLCs of women with PCOS show reduced expression of pro-angiogenic factors compared to controls and exhibit a diminished capacity to induce angiogenesis. WHAT IS KNOWN ALREADY In women with PCOS, CL insufficiency and frequent miscarriage are reported, which may be due to defect in CL. The development of new blood vessels is essential to promote ovarian folliculogenesis and functional CL formation. The vasculature formation in CL which is important for its function is still unexplored in these women. STUDY DESIGN, SIZE, DURATION This case-control study was conducted in 30 healthy control women and 30 women with PCOS undergoing controlled ovarian hyperstimulation for IVF. The FF, GLCs and serum were collected from all participants during ovum pick up. PARTICIPANTS/MATERIALS, SETTING, METHODS The capacity of FF to induce angiogenesis was assessed by measuring levels of pro-angiogenic factors vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) and its tube formation and wound healing potential using human umbilical vein endothelial cells (HUVECs). We investigated the angiogenic potential and endothelial cell-like nature of GLCs using several approaches such as the expression of angiogenic genes by quantitative PCR, DiI-conjugated acetylated low-density lipoproteins (Dil-Ac-LDL) internalization assay, tube formation assay, expression of endothelial cell markers by immunofluorescence analysis. In addition, correlation of transcript levels of angiogenic genes with oocyte parameters was studied. MAIN RESULTS AND THE ROLE OF CHANCE FF and serum levels of VEGF and FGF2 were significantly higher and lower, respectively, in PCOS compared to controls. The tube formation and wound healing capacity of HUVECs was found to be reduced when measured after supplementation with FF of women with PCOS compared to controls. This suggests a decreased angiogenic capacity of FF in women with PCOS. Tube formation (P = 0.003) and Dil-Ac-LDL internalization (P = 0.03) ability of GLCs were significantly reduced in women with PCOS compared to controls. Protein expression levels of endothelial markers, vascular endothelial growth factor A (VEGFA) (P = 0.004), vascular endothelial growth factor receptor 2 (VEGFR2) (P = 0.011), TEK Receptor Tyrosine Kinase (Tie-2) (P = 0.026), fibroblast growth factor receptor 1 (FGFR1) (P = 0.026) and CD31 (P = 0.035) and transcript levels of angiogenic genes VEGFA (P = 0.042), hypoxia inducing factor 1A (HIF1A) (P = 0.025), FGF2 (P = 0.038), angiopoietin 1 (ANGPT1) (P = 0.028), heparin sulfate proteoglycan 2 (HSPG2) (P = 0.016), ADAM metallopeptidase with thrombospondin type1 motif, 1 (ADAMTS1) (P = 0.027) and fibronectin 1 (FN1) (P = 0.016) were found to be low in GLCs of PCOS compared to controls. Thus, the findings of this study indicate that endothelial cell-like characteristics of GLCs were significantly decreased in PCOS. Furthermore, transcript levels of VEGFA (r = 0.46, P = 0.009), ADAMTS1 (r = 0.55, P = 0.001), FGF2 (r = 0.42, P = 0.022) and ANGPT2 (r = 0.47, P = 0.008) showed a positive correlation with oocyte fertilization rate. LIMITATIONS, REASONS FOR CAUTION The vasculature formation in CL is not possible to study in women, but we explored the angiogenic characteristics of FF and GLC obtained from women with PCOS to speculate any vascularization defect of CL in these women. The FF and GLCs were obtained from the stimulated cycle during oocyte retrieval, which may not exactly mimic the in-vivo condition. The small sample size is another limitation of this study. Larger sample size and support by color Doppler studies on CL blood flow would help to strengthen our findings. WIDER IMPLICATIONS OF THE FINDINGS Our findings suggest that the altered angiogenic potential of FF and GLCs may affect vasculature development required for CL formation and function in PCOS. These findings pave the way to devise therapeutic strategies to support angiogenesis process in follicle of women with PCOS, which may improve CL insufficiency, progesterone levels and prevent frequent miscarriages in these women. Furthermore, our study also hypothesizes that the vascularization around the ovarian follicles is also compromised which may lead to the growth arrest of the follicles in PCOS, however, this needs thorough investigations. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Grant BT/PR16524/MED/97/346/2016 from the Department of Biotechnology, Government of India. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A


2001 ◽  
Vol 168 (3) ◽  
pp. 409-416 ◽  
Author(s):  
SE Dickson ◽  
R Bicknell ◽  
HM Fraser

Vascular endothelial growth factor (VEGF) is essential for the angiogenesis required for the formation of the corpus luteum; however, its role in ongoing luteal angiogenesis and in the maintenance of the established vascular network is unknown. The aim of this study was to determine whether VEGF inhibition could intervene in ongoing luteal angiogenesis using immunoneutralisation of VEGF starting in the mid-luteal phase. In addition, the effects on endothelial cell survival and the recruitment of periendothelial support cells were examined. Treatment with a monoclonal antibody to VEGF, or mouse gamma globulin for control animals, commenced on day 7 after ovulation and continued for 3 days. Bromodeoxyuridine (BrdU), used to label proliferating cells to obtain a proliferation index, was administered one hour before collecting ovaries from control and treated animals. Ovarian sections were stained using antibodies to BrdU, the endothelial cell marker, CD31, the pericyte marker, alpha-smooth muscle actin, and 3' end DNA fragments as a marker for apoptosis. VEGF immunoneutralisation significantly suppressed endothelial cell proliferation and the area occupied by endothelial cells while increasing pericyte coverage and the incidence of endothelial cell apoptosis. Luteal function was markedly compromised by anti-VEGF treatment as judged by a 50% reduction in plasma progesterone concentration. It is concluded that ongoing angiogenesis in the mid-luteal phase is primarily driven by VEGF, and that a proportion of endothelial cells of the mid-luteal phase vasculature are dependent on VEGF support.


Sign in / Sign up

Export Citation Format

Share Document