scholarly journals Nuclear Factor-κB and cAMP Response Element Binding Protein Mediate Opposite Transcriptional Effects on the Flk-1/KDR Gene Promoter

2000 ◽  
Vol 86 (12) ◽  
Author(s):  
Barbara Illi ◽  
PierLorenzo Puri ◽  
Liliana Morgante ◽  
Maurizio C. Capogrossi ◽  
Carlo Gaetano
2000 ◽  
Vol 352 (2) ◽  
pp. 335-342 ◽  
Author(s):  
John M. ROUTES ◽  
Lillester A. COLTON ◽  
Sharon RYAN ◽  
Dwight J. KLEMM

In the present study, we observed superstimulated levels of cAMP-stimulated transcription from the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter in cells infected with wild-type adenovirus expressing 12S and 13S E1a proteins, or in cells expressing 13S E1a alone. cAMP-stimulated transcription was inhibited in cells expressing only 12S E1a, but slightly elevated in cells expressing E1a proteins with mutations in conserved regions 1 or 2, leading us to conclude that the superstimulation was mediated by conserved region 3 of 13S E1a. E1a failed to enhance cAMP-stimulated transcription from promoters containing mutations that abolish binding by cAMP response element binding protein (CREB) or CCAAT/enhancer binding proteins (C/EBPs). This result was supported by experiments in which expression of dominant-negative CREB and/or C/EBP proteins repressed E1a- and cAMP-stimulated transcription from the PEPCK gene promoter. In reconstitution experiments using a Gal4-responsive promoter, E1a enhanced cAMP-stimulated transcription when chimaeric Gal4–CREB and Gal4–C/EBPα were co-expressed. Phosphorylation of CREB on serine-133 was stimulated in cells treated with dibutyryl cAMP, whereas phosphorylation of C/EBPα was increased by E1a expression. Our data support a model in which cAMP agonists increase CREB activity and stimulate PEPCK gene transcription, a process that is enhanced by E1a through the phosphorylation of C/EBPα.


2011 ◽  
Vol 25 (3) ◽  
pp. 445-459 ◽  
Author(s):  
Feixue Li ◽  
Jing Liu ◽  
Misung Jo ◽  
Thomas E. Curry

Abstract The LH surge triggers dramatic transcriptional changes in genes associated with ovulation and luteinization. The present study investigated the spatiotemporal expression of nuclear factor IL-3 (NFIL3), a transcriptional regulator of the basic leucine zipper transcription factor superfamily, and its potential role in the ovary during the periovulatory period. Immature female rats were injected with pregnant mare's serum gonadotropin, treated with human chorionic gonadotropin (hCG), and ovaries or granulosa cells were collected at various times after hCG. Nfil3 mRNA was highly induced both in intact ovaries and granulosa cells after hCG treatment. In situ hybridization demonstrated that Nfil3 mRNA was highly induced in theca-interstitial cells at 4–8 h after hCG, localized to granulosa cells at 12 h, and decreased at 24 h. Overexpression of NFIL3 in granulosa cells inhibited the induction of prostaglandin-endoperoxide synthase 2 (Ptgs2), progesterone receptor (Pgr), epiregulin (Ereg), and amphiregulin (Areg) and down-regulated levels of prostaglandin E2. The inhibitory effect on Ptgs2 induction was reversed by NFIL3 small interfering RNA treatment. In theca-interstitial cells the expression of hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (Hpgd) was also inhibited by NFIL3 overexpression. Data from luciferase assays demonstrated that NFIL3 overexpression decreased the induction of the Ptgs2 and Areg promoter activity. EMSA and chromatin immunoprecipitation analyses indicated that NFIL3 binds to the promoter region containing the DNA-binding sites of cAMP response element binding protein and CCAAT enhancer binding protein-β. In summary, hCG induction of NFIL3 expression may modulate the process of ovulation and theca-interstitial and granulosa cell differentiation by regulating expression of PTGS2, PGR, AREG, EREG, and HPGD, potentially through interactions with cAMP response element binding protein and CCAAT enhancer binding protein-β on their target gene promoters.


2019 ◽  
Vol 17 (3) ◽  
pp. 249-253
Author(s):  
Liu Chenglong ◽  
Liu Haihua ◽  
Zhang Fei ◽  
Zheng Jie ◽  
Wei Fang

Cancer-induced bone pain is a severe and complex pain caused by metastases to bone in cancer patients. The aim of this study was to investigate the analgesic effect of scutellarin on cancer-induced bone pain in rat models by intrathecal injection of Walker 256 carcinoma cells. Mechanical allodynia was determined by paw withdrawal threshold in response to mechanical stimulus, and thermal hyperalgesia was indicated by paw withdrawal latency in response to noxious thermal stimulus. The paw withdrawal threshold and paw withdrawal latencies were significantly decreased after inoculation of tumor cells, whereas administration of scutellarin significantly attenuated tumor cell inoculation-induced mechanical and heat hyperalgesia. Tumor cell inoculation-induced tumor growth was also significantly abrogated by scutellarin. Ca2+/calmodulin-dependent protein kinase II is a multifunctional kinase with up-regulated activity in bone pain models. The activation of Ca2+/calmodulin-dependent protein kinase II triggers phosphorylation of cAMP-response element binding protein. Scutellarin significantly reduced the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein in cancer-induced bone pain rats. Collectively, our study demonstrated that scutellarin attenuated tumor cell inoculation-induced bone pain by down-regulating the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein. The suppressive effect of scutellarin on phosphorylated-Ca2+/calmodulin-dependent protein kinase II/phosphorylated-cAMP-response element binding protein activation may serve as a novel therapeutic strategy for CIBP management.


Circulation ◽  
1995 ◽  
Vol 92 (8) ◽  
pp. 2041-2043 ◽  
Author(s):  
Frank Ulrich Müller ◽  
Peter Bokník ◽  
Andreas Horst ◽  
Jörg Knapp ◽  
Bettina Linck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document