scholarly journals Regional Impairment of Cerebrovascular Reactivity and BOLD Signal in Adults After Stroke

Stroke ◽  
2005 ◽  
Vol 36 (6) ◽  
pp. 1146-1152 ◽  
Author(s):  
Alexandre Krainik ◽  
Margret Hund-Georgiadis ◽  
Stefan Zysset ◽  
D. Yves von Cramon
2021 ◽  
pp. 0271678X2097858
Author(s):  
Jinxia (Fiona) Yao ◽  
Ho-Ching (Shawn) Yang ◽  
James H Wang ◽  
Zhenhu Liang ◽  
Thomas M Talavage ◽  
...  

Elevated carbon dioxide (CO2) in breathing air is widely used as a vasoactive stimulus to assess cerebrovascular functions under hypercapnia (i.e., “stress test” for the brain). Blood-oxygen-level-dependent (BOLD) is a contrast mechanism used in functional magnetic resonance imaging (fMRI). BOLD is used to study CO2-induced cerebrovascular reactivity (CVR), which is defined as the voxel-wise percentage BOLD signal change per mmHg change in the arterial partial pressure of CO2 (PaCO2). Besides the CVR, two additional important parameters reflecting the cerebrovascular functions are the arrival time of arterial CO2 at each voxel, and the waveform of the local BOLD signal. In this study, we developed a novel analytical method to accurately calculate the arrival time of elevated CO2 at each voxel using the systemic low frequency oscillations (sLFO: 0.01-0.1 Hz) extracted from the CO2 challenge data. In addition, 26 candidate hemodynamic response functions (HRF) were used to quantitatively describe the temporal brain reactions to a CO2 stimulus. We demonstrated that our approach improved the traditional method by allowing us to accurately map three perfusion-related parameters: the relative arrival time of blood, the hemodynamic response function, and CVR during a CO2 challenge.


2019 ◽  
Author(s):  
Suk Tak Chan ◽  
Karleyton C. Evans ◽  
Tian Yue Song ◽  
Juliett Selb ◽  
Andre van der Kouwe ◽  
...  

AbstractHypercapnia during breath holding is believed to be the dominant driver behind the modulation of cerebral blood flow (CBF). Here we showed that the cerebrovascular responses to brief breath hold epochs were coupled not only with increased partial pressure of carbon dioxide (PCO2), but also with a decrease in partial pressure of oxygen (PO2). We used transcranial Doppler ultrasound to evaluate the CBF changes during breath holding by measuring the cerebral blood flow velocity (CBFv) in the middle cerebral arteries, a pair of cerebral arteries that supply most parts of the brain. The regional CBF changes during breath hold epochs were mapped with blood oxygenation level dependent (BOLD) signal changes as surrogate of CBF changes using functional magnetic resonance imaging (fMRI) technique. Given the interdependence of the dynamic changes between PCO2 and PO2, we found that the breath-by-breath O2-CO2 exchange ratio (bER), namely the ratio of changes in PO2 (ΔPO2) to changes in PCO2 (ΔPCO2) between end inspiration and end expiration, was superior to either ΔPO2 or ΔPCO2 alone in coupling with the changes of CBFv and BOLD signals under breath hold challenge. The regional cerebrovascular reactivity (CVR) results derived by regressing BOLD signal changes on bER under breath hold challenge resembled those derived by regressing BOLD signal changes on end-tidal partial pressure of CO2 (PETCO2) under exogenous CO2 challenge. Our findings provide a novel insight on the potential of using bER to better quantify CVR changes under breath hold challenge, although the physiological mechanisms of cerebrovascular changes underlying breath hold and exogenous CO2 challenges are potentially different.


2016 ◽  
Vol 43 (6Part25) ◽  
pp. 3646-3647 ◽  
Author(s):  
P Wang ◽  
P Hou ◽  
S Kesler ◽  
R Colen ◽  
A Kumar ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 55-55
Author(s):  
Stéphanie Forté ◽  
Olivia Sobczyk ◽  
Julien Poublanc ◽  
James Duffin ◽  
Joe Fisher ◽  
...  

Background: By age 30, over 50% of sickle cell disease (SCD) patients have suffered a cerebral infarct. In response to anemia and the reduction in oxygen-carrying capacity, cerebral blood flow (CBF) increases to match metabolic demand. Increased velocity of CBF in major cerebral arteries is a strong risk factor for stroke in SCD children and adolescents. Despite generally increased CBF, silent cerebral infarcts (SCI) can still occur in patients receiving optimal transfusions. This suggests that the increased CBF does not meet metabolic demand and that vasodilatory response is compromised. Hypothesis: In adult patients with SCD, cerebrovascular reactivity (slope of the vasodilatory response to CO2 (CVR) and the steady-state CVR (amplitude) and speed of the vasodilatory response (tau) to a standardized vasodilatory stimulus CO2), are reduced compared to normal subjects. We also explored for possible associations with clinical characteristics. Methods: Functional brain imaging performed as part of routine care in adult (≥18) SCD patients (any phenotype) at the University Health Network Comprehensive Sickle Cell Center (Toronto, Canada) between 2017 and 2018 were reviewed. Patients with known cerebral vasculopathy were excluded. CVR was calculated as the change in CBF measured as the blood oxygenation level dependent (BOLD)-MRI signal, in response to a standard vasoactive stimulus of CO2 (delivered by RespirActTM). To calculate the dynamic (tau) and steady-state CVR (amplitude) components of the BOLD signal response, the PET CO2 waveform was convolved with an exponential decay function. The tau corresponding to the best fit between the convolved CO2 and BOLD signal was defined as the speed of vascular response. The slope of the regression between the convolved CO2 and BOLD signal was defined as amplitude. CVR, amplitude and tau were normalized voxel-wise relative to the mean and standard deviation of the same metric in the corresponding voxels of a previously generated atlas of 42 healthy controls (Z scores). These Z scores were averaged over the vascular territories of the brain for both grey (GM) and white matter (WM). Fisher exact and Pearson correlations were performed to identify possible associations between CVR metrics and SCD comorbid conditions, laboratory parameters, and use of disease-modifying therapy. Associations with univariate P <0.20 were included in the multiple linear regression model. Multi-collinearity was assessed. Results: Fifteen patients were included in the study. The median age was 27 [IQR22-35]. 5/15 (33.3%) were male. 9/15 (60%) were SS or S/b0 and 5/15 (33.3%) were SC. 4/15 (26.7%) were on transfusion. MRI/MRA uncovered Moya moya in 1 patient. SCI were present in 3/15 (21.4%). Compared to the reference atlas of normal subjects, CVR and amplitude were reduced both in GM and WM (mean Z-score for CVR -0.52 [-1.8 - 0.28] and -0.63 [-2.31 - 0.66]; amplitude -0.26 [-2.61 - 0.66] and -0.28 [-2.70 - 0.60] respectively). Tau was lengthened in GM and WM (mean tau Z-score +0.90 [-0.49 - 3.32] and +0.76 [-0.66 - 2.78] respectively). These abnormal metrics were observed with varying severities in all 3 main vascular territories (Figure). CVR decreased linearly with decreasing hematocrit (Hct) (r=0.59, p=0.03). There was also a trend towards lower CVR in SS or S/b0 patients (t=-1.41, p=0.18, d=0.76) and was highly collinear with Hct. Hematocrit was the only significant independent predictor of CVR metrics on multivariable regression. Conclusions: All three measures of cerebrovascular health (CVR, amplitude and tau) in SCD patients were abnormal compared to normal controls. Hematocrit appears to be the strongest independent predictor of these measures. The protocol we applied for measuring CVR provides a standardized reproducible vasodilatory stimulus, enabling comparison against a population of healthy individuals for more accurate assessment of CVR in individual subjects. Furthermore, the stimulus protocol produces rapid changes in arterial CO2 levels within one breath that can be used to measure the speed of response of the vasculature representing a novel metric of vascular performance postulated to represent vessel compliance and functional endothelial integrity. These findings show that CVR methodology represents a promising tool to assess disease state, stroke risk, and therapeutic efficacy in sickle cell patients and merits further investigation. Figure 1 Disclosures Forté: Canadian Hematology Society: Research Funding; Pfizer - Global Medical Grants: Research Funding. Sobczyk:Thornhill Research Inc.: Current Employment. Duffin:Thornhill Research Inc.: Current Employment. Fisher:Thornhill Research Inc.: Current equity holder in private company. Mikulis:Thornhill Research Inc.: Current equity holder in private company. Kuo:Bioverativ: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria; Bluebird Bio: Consultancy; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees; Alexion: Consultancy, Honoraria; Pfizer: Consultancy, Research Funding; Apellis: Consultancy; Celgene: Consultancy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Donghoon Kim ◽  
Timothy M. Hughes ◽  
Megan E. Lipford ◽  
Suzanne Craft ◽  
Laura D. Baker ◽  
...  

Vascular risk factors (e.g., obesity and hypertension) are associated with cerebral small vessel disease, Alzheimer’s disease (AD) pathology, and dementia. Reduced perfusion may reflect the impaired ability of blood vessels to regulate blood flow in reaction to varying circumstances such as hypercapnia (increased end-tidal partial pressures of CO2). It has been shown that cerebrovascular reactivity (CVR) measured with blood-oxygen-level-dependent (BOLD) MRI is correlated with cognitive performance and alterations of CVR may be an indicator of vascular disfunction leading to cognitive decline. However, the underlying mechanism of CVR alterations in BOLD signal may not be straight-forward because BOLD signal is affected by multiple physiological parameters, such as cerebral blood flow (CBF), cerebral blood volume, and oxygen metabolism. Arterial spin labeling (ASL) MRI quantitatively measures blood flow in the brain providing images of local CBF. Therefore, in this study, we measured CBF and its changes using a dynamic ASL technique during a hypercapnia challenge and tested if CBF or CVR was related to cognitive performance using the Mini-mental state examination (MMSE) score. Seventy-eight participants underwent cognitive testing and MRI including ASL during a hypercapnia challenge with a RespirAct computer-controlled gas blender, targeting 10 mmHg higher end-tidal CO2 level than the baseline while end-tidal O2 level was maintained. Pseudo-continuous ASL (PCASL) was collected during a 2-min baseline and a 2-min hypercapnic period. CVR was obtained by calculating a percent change of CBF per the end-tidal CO2 elevation in mmHg between the baseline and the hypercapnic challenge. Multivariate regression analyses demonstrated that baseline resting CBF has no significant relationship with MMSE, while lower CVR in the whole brain gray matter (β = 0.689, p = 0.005) and white matter (β = 0.578, p = 0.016) are related to lower MMSE score. In addition, region of interest (ROI) based analysis showed positive relationships between MMSE score and CVR in 26 out of 122 gray matter ROIs.


2020 ◽  
Vol 2 (9) ◽  
pp. 1551-1562
Author(s):  
Leonie Zerweck ◽  
Till-Karsten Hauser ◽  
Constantin Roder ◽  
Uwe Klose

Abstract For the prognosis of stroke, patients with moyamoya disease (MMD) require the estimation of remaining cerebrovascular reactivity. For this purpose, CO2-triggered BOLD fMRI by use of short breath-hold periods seems to be a highly available alternative to nuclear medicine methods. Too long breath-hold periods are difficult to perform, too short breath-hold periods do not lead to sufficient BOLD signal changes. We aimed to investigate the required minimum breath-hold duration to detect distinct BOLD signals in the tissue of healthy subjects to find out how long the minimum breath-hold duration in clinical diagnostics of MMD should be. A prospective study was performed. Fourteen healthy subjects underwent fMRI during end-expiration breath-hold periods of different duration (3, 6, 9, and 12 s). Additionally, we compared the influence of paced and self-paced breathing altering the breath-hold periods. Data of a patient with MMD was evaluated to investigate whether the tested procedure is suitable for clinical use. Significant global BOLD signal increases were detected after breath-hold periods of 6, 9, and 12 s. The signals were significantly higher after breath-hold periods of 9 s than after 6 s, while not when the duration was extended from 9 to 12 s. Furthermore, we found additional BOLD signal changes before the expected signal increases, which could be avoided by paced respiratory instructions. This investigation indicates that end-expiration breath-hold period of at least 9 s might be used to measure the cerebrovascular reactivity. This time period resulted in distinct BOLD signal changes and could be performed easily.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Kelley C Mazzetto-Betti ◽  
Luis H Castro-Afonso ◽  
Pedro T Pinto ◽  
Antonio C dos Santos ◽  
Daniel Abud ◽  
...  

Background and Purpose: Previous transcranial Doppler studies have suggested that, in patients with severe carotid stenosis, the lack of cerebrovascular reactivity (CVR) is an independent predictor of ipsilateral stroke. The BOLD (Blood Oxygenation Level-Dependent) fMRI contrast can be used to assess the CVR during normal condition and during hemodynamic stress, like hypercapnia. The purpose of this study is to evaluate the BOLD signal parameters on the Middle Cerebral Artery (MCA) territory, induced by auditory stimulus, during different levels of hypercapnia in patients with severe unilateral carotid stenosis, comparing the ipsilateral hemisphere (IH) to the contralateral hemisphere (CH). Methods: The images were obtained from 16 patients with severe unilateral carotid stenosis. Patients were submitted to an auditory stimulus (3s) in three different conditions: normocapnia and at EtCO2 increase of 5 and 10mmHg. The images were acquired with a 3T Philips MR, preprocessed and analyzed using an autoregressive method. Results: The BOLD signal from the IH was different from the CH during the basal condition and at 5mmHg (p<0.0001), but not at the 10mmHg ETCO2 increase. For each BOLD parameter, the major differences between the hemispheres were seen on the onset time (p<0.0001) and amplitude of BOLD signal (p<0.0001). The width difference was significant between the basal and 10mmhHg increase (p<0.01). In these three parameters, the BOLD signal of the IH presented no significant variations with the CO2 increment. However, the BOLD signal for CH showed an increase on the time-to-onset and width and amplitude decrease. The time to peak parameters of the BOLD signal showed no differences between the hemispheres and at hypercapnic conditions. Conclusion: In our results the IH did not respond to the hypercapnic stress as the CH. Therefore, among patients with severe carotid stenosis, BOLD can reliably identify some that have an exhausted CVR, which cannot respond to a vasodilatory stress like hypercapnia. Future studies using this technique may help to select patients for recanalization procedures.


2016 ◽  
Vol 30 (4) ◽  
pp. 165-174 ◽  
Author(s):  
Ryan Smith ◽  
John J.B. Allen ◽  
Julian F. Thayer ◽  
Richard D. Lane

Abstract. We hypothesized that in healthy subjects differences in resting heart rate variability (rHRV) would be associated with differences in emotional reactivity within the medial visceromotor network (MVN). We also probed whether this MVN-rHRV relationship was diminished in depression. Eleven healthy adults and nine depressed subjects performed the emotional counting stroop task in alternating blocks of emotion and neutral words during functional magnetic resonance imaging (fMRI). The correlation between rHRV outside the scanner and BOLD signal reactivity (absolute value of change between adjacent blocks in the BOLD signal) was examined in specific MVN regions. Significant negative correlations were observed between rHRV and average BOLD shift magnitude (BSM) in several MVN regions in healthy subjects but not depressed subjects. This preliminary report provides novel evidence relating emotional reactivity in MVN regions to rHRV. It also provides preliminary suggestive evidence that depression may involve reduced interaction between the MVN and cardiac vagal control.


Sign in / Sign up

Export Citation Format

Share Document