scholarly journals Therapeutic Inhibition of miR-33 Promotes Fatty Acid Oxidation but Does Not Ameliorate Metabolic Dysfunction in Diet-Induced Obesity

2015 ◽  
Vol 35 (12) ◽  
pp. 2536-2543 ◽  
Author(s):  
Denuja Karunakaran ◽  
Laura Richards ◽  
Michele Geoffrion ◽  
Danyk Barrette ◽  
Ryan J. Gotfrit ◽  
...  
2017 ◽  
Vol 312 (5) ◽  
pp. E381-E393 ◽  
Author(s):  
Elsie Gonzalez-Hurtado ◽  
Jieun Lee ◽  
Joseph Choi ◽  
Ebru S. Selen Alpergin ◽  
Samuel L. Collins ◽  
...  

Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose-driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase II (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation-deficient CPT2 Mϕ-KO bone marrow-derived macrophages displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet-induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although IL-4-stimulated alternatively activated macrophages upregulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative, rather than causative, role in systemic metabolic dysfunction.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Dan Shao ◽  
Nathan Roe ◽  
Loreta D Tomasi ◽  
Alyssa N Braun ◽  
Ana Mattos ◽  
...  

In the obese and diabetic heart, an imbalance between fatty acid uptake and fatty acid oxidation (FAO) promotes the development of cardiac lipotoxicity. We previously showed that cardiac specific deletion of acetyl CoA carboxylase 2 (ACC2) was effective in increasing myocardial FAO while maintaining normal cardiac function and energetics. In this study, we tested the hypothesis that ACC2 deletion in an adult heart would prevent the cardiac lipotoxic phenotype in a mouse model of diet-induced obesity. ACC2 flox/flox (CON) and ACC2 flox/flox-MerCreMer+ (iKO) after tamoxifen injection were subjected to a high fat diet (HFD) for 24 weeks. HFD induced similar body weight gain and glucose intolerance in CON and iKO. In isolated Langendorff-perfused heart experiments, HFD feeding increased FAO 1.6-fold in CON mice which was increased to 2.5-fold in iKO mice compared with CON on chow diet. Fractional shortening was significantly decreased in CON-HFD (32.8±2.8% vs. 39.2±3.2%, p< 0.05, n=5-6), but preserved in iKO-HFD mice (42.8±2.3%, vs. 38.5±1.4%, n=6), compared to respective chow fed controls. Diastolic function, assessed by E’/A’ ratio using tissue Doppler imaging, was significantly decreased in CON-HFD mice (1.11±0.08 vs. 0.91±0.09, p<0.05 n=5-6), while no difference was observed in iKO-HFD compared to iKO-chow (1.10±0.03 vs. 1.09±0.04, n=6). Heart weight /Tibia length ratio was significantly higher in CON than iKO mice after HFD feeding (7.19±0.22 vs. 6.47±0.28, p<0.05, n=6). Furthermore, HFD induced mitochondria super complex II, III and V instability, which was attenuated in iKO-HFD mice. These data indicate that elevated myocardial FAO per se does not cause the development of cardiac dysfunction in obese animals. In fact, enhancing FAO via ACC2 deletion prevents HFD induced cardiac dysfunction and attenuates pathological hypertrophy. These effects may be mediated, in part, by maintenance of mitochondrial integrity. Taken together, our findings suggest that promoting cardiac FAO is an effective strategy to resist the development of cardiac lipotoxicity during diet-induced obesity.


2010 ◽  
Vol 298 (3) ◽  
pp. E652-E662 ◽  
Author(s):  
Akira Shimotoyodome ◽  
Junko Suzuki ◽  
Daisuke Fukuoka ◽  
Ichiro Tokimitsu ◽  
Tadashi Hase

Chemically modified starches (CMS) are RS4-type resistant starch, which shows a reduced availability, as well as high-amylose corn starch (HACS, RS2 type), compared with the corresponding unmodified starch. Previous studies have shown that RS4 increases fecal excretion of bile acids and reduces zinc and iron absorption in rats. The aim of this study was to investigate the effects of dietary RS4 supplementation on the development of diet-induced obesity in mice. Weight- and age-matched male C57BL/6J mice were fed for 24 wk on a high-fat diet containing unmodified starch, hydroxypropylated distarch phosphate (RS4), or HACS (RS2). Those fed the RS4 diet had significantly lower body weight and visceral fat weight than those fed either unmodified starch or the RS2 diet. Those fed the RS4 diet for 4 wk had a significantly higher hepatic fatty acid oxidation capacity and related gene expression and lower blood insulin than those fed either unmodified starch or the RS2 diet. Indirect calorimetry showed that the RS4 group exhibited higher energy expenditure and fat utilization compared with the RS2 group. When gavaged with fat (trioleate), RS4 stimulated a lower postprandial glucose-dependent insulinotropic polypeptide (GIP; incretin) response than RS2. Higher blood GIP levels induced by chronic GIP administration reduced fat utilization in high-fat diet-fed mice. In conclusion, dietary supplementation with RS4-type resistant starch attenuates high-fat diet-induced obesity more effectively than RS2 in C57BL/6J mice, which may be attributable to lower postprandial GIP and increased fat catabolism in the liver.


Diabetologia ◽  
2011 ◽  
Vol 55 (1) ◽  
pp. 183-193 ◽  
Author(s):  
C. Zhang ◽  
C. McFarlane ◽  
S. Lokireddy ◽  
S. Masuda ◽  
X. Ge ◽  
...  

Diabetes ◽  
2007 ◽  
Vol 56 (10) ◽  
pp. 2523-2532 ◽  
Author(s):  
J. Z. Li ◽  
J. Ye ◽  
B. Xue ◽  
J. Qi ◽  
J. Zhang ◽  
...  

2014 ◽  
Vol 25 (10) ◽  
pp. 1077-1083 ◽  
Author(s):  
Julie Marcotorchino ◽  
Franck Tourniaire ◽  
Julien Astier ◽  
Esma Karkeni ◽  
Matthias Canault ◽  
...  

2021 ◽  
Author(s):  
Norihiro Imai ◽  
Hayley T. Nicholls ◽  
Michele Alves-Bezerra ◽  
Yingxia Li ◽  
Anna A. Ivanova ◽  
...  

ABSTRACTThioesterase superfamily member 2 (Them2) is highly expressed in oxidative tissues where it hydrolyzes long chain fatty acyl-CoA esters to free fatty acids and CoA. Although mice globally lacking Them2 (Them2-/-) are protected against diet-induced obesity, insulin resistance and hepatic steatosis, liver-specific Them2-/- mice remain susceptible. To explore the contribution of Them2 in extrahepatic tissues, we created mice with Them2 deleted in skeletal muscle (S-Them2-/-), cardiac muscle (C-Them2-/-) or adipose tissue (A-Them2-/-). When fed a high-fat diet, S-Them2-/- but not C-Them2-/- or A-Them2-/- mice exhibited reduced weight gain. Only S-Them2-/- mice exhibited improved glucose homeostasis together with improved insulin sensitivity in skeletal muscle. Increased rates of fatty acid oxidation in skeletal muscle of S-Them2-/- mice were reflected in alterations in skeletal muscle metabolites, including short chain fatty acids, branched chain amino acids and the pentose phosphate pathway. Protection from diet-induced hepatic steatosis in S-Them2-/- mice was attributable to increased VLDL triglyceride secretion rates in support of demands of increased muscle fatty acid utilization. These results reveal a key role for skeletal muscle Them2 in the pathogenesis of diet-induced obesity, insulin resistance and hepatic steatosis.


Sign in / Sign up

Export Citation Format

Share Document