Abstract 11423: Mitochondrial Calcium Flux Modulates Pacemaker Activity in Mouse Stem Cell Derived Cardiomyocytes

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
An Xie ◽  
Anyu Zhou ◽  
Hong Liu ◽  
Guangbin Shi ◽  
Kenneth R Boheler ◽  
...  

INTRODUCTION: Ca2+ release from sarcoplasmic reticulum (SR) is known to contribute to the pacemaker activity in embryonic stem cells (ESC) derived cardiomyocytes (CMs). Mitochondria are known to participate in Ca2+ cycling. Nevertheless, the role of mitochondria in pacemaker activity is unclear. We studied the role of mitochondrial Ca2+ flux in spontaneously activity of ESC derived CMs. METHODS: CMs were derived from Wt and ryanodine receptor type 2 knockout (RYR2-/-) mouse ESC. Action potentials (APs) were recorded by perforated whole-cell current-clamp. Cytoplasmic and mitochondrial Ca2+ transients were determined by Fluo-4 and Rhod-2 respectively. Mitochondrial Ca2+ uniporter (MCU) siRNA was used. The mRNA level was evaluated by qPCR. RESULTS: As predicted, SR Ca2+ handling inhibitors, 10 μM ryanodine and 2 μM 2-APB, reduced spontaneous beating rate to 56% and 73% respectively in Wt CMs. Inhibition of mitochondrial Ca2+ flux by 10 μM Ru360 showed a similar inhibition effect on the pacemaker activity as 2 μM 2-APB in Wt CMs. To isolate the mitochondrial component, we used RYR2-/- CMs. In these cells, MCU inhibition by pharmacological or molecular biological means reduced beating rate. The MCU mRNA decreased by 96% after MCU siRNA silence 72 hrs (p<0.01). AP and mitochondrial Ca2+ transient synchronous recording revealed that the reduction of spontaneous beating rate accompanied with the depressed mitochondrial Ca2+ uptaking and releasing. In RyR2-/- CMs, 2 μM 2-APB could significantly lower the spontaneous beating rate. While 2 μM 2-APB was applied to MCU silenced RyR2-/- CMs, the beating rate couldn’t be slowed down further. This indicated IP3 receptors reduced spontaneous beating rate via MCU. Thapsigargin could substantially slow down beating rate like 2-APB. Caffeine depletion experiments showed other ryanodine receptor subtypes didn’t contribute Ca2+ release in RyR2-/- CMs. A L-type Ca2+ channel block, 10 μM nifedipine, couldn’t reduce beating frequency. This indicated spontaneous beating rate is Ca2+ influx independent in RyR2-/- CMs. CONCLUSIONS: Mitochondrial Ca2+ handling plays an important role in decreasing spontaneous beating rate. IP3R reduced spontaneous beating rate through MCU.

2011 ◽  
Vol 301 (6) ◽  
pp. R1838-R1845 ◽  
Author(s):  
Danielle F. Feliciano ◽  
Rosana A. Bassani ◽  
Pedro X. Oliveira ◽  
José W. M. Bassani

The electrophysiological properties of the myogenic cardiac cells of insects have been analyzed, but the mechanisms that regulate the pacemaker activity have not been elucidated yet. In mammalian pacemaker cells, different types of membrane ion channels seem to be sequentially activated, perhaps in a cooperative fashion with the current generated by Ca2+ extrusion mediated by the electrogenic Na+/Ca2+ exchanger, which is sustained by the diastolic sarcoplasmic reticulum (SR) Ca2+ release. The objective of the present work was to investigate the role of the SR function on the basal beating rate (BR), and BR modulation by extracellular Ca2+ concentration ([Ca2+]o) and neurotransmitters in the in situ dorsal vessel (heart) of the mealworm beetle Tenebrio molitor . The main observations were as follows: 1) basal BR was reduced by 50% by inhibition of SR function, but not affected by perfusion with CsCl or ZD7288; 2) spontaneous activity was abolished by Cd2+; 3) a robust positive chronotropic response could be elicited to serotonin (5-HT), but not to norepinephrine or carbamylcholine; 4) SR inhibition abolished the sustained chronotropic stimulation by [Ca2+]o elevation and by 5-HT, while the latter was unaffected by CsCl. It is concluded that, in T. molitor heart, BR is markedly, but not exclusively, dependent on the SR function, and that BR control and modulation by both [Ca2+]o and 5-HT requires a functional SR.


Cell Calcium ◽  
2008 ◽  
Vol 43 (5) ◽  
pp. 417-431 ◽  
Author(s):  
Hui-Mei Yu ◽  
Jing Wen ◽  
Rong Wang ◽  
Wan-Hua Shen ◽  
Shumin Duan ◽  
...  

1999 ◽  
Vol 27 (16) ◽  
pp. 3276-3282 ◽  
Author(s):  
P. P. H. Van Sloun ◽  
J. G. Jansen ◽  
G. Weeda ◽  
L. H. F. Mullenders ◽  
A. A. van Zeeland ◽  
...  

2021 ◽  
Vol 22 (8) ◽  
pp. 3982
Author(s):  
Karolina Kotecka ◽  
Adam Kawalek ◽  
Kamil Kobylecki ◽  
Aneta Agnieszka Bartosik

Pseudomonas aeruginosa is a facultative human pathogen, causing acute and chronic infections that are especially dangerous for immunocompromised patients. The eradication of P. aeruginosa is difficult due to its intrinsic antibiotic resistance mechanisms, high adaptability, and genetic plasticity. The bacterium possesses multilevel regulatory systems engaging a huge repertoire of transcriptional regulators (TRs). Among these, the MarR family encompasses a number of proteins, mainly acting as repressors, which are involved in response to various environmental signals. In this work, we aimed to decipher the role of PA3458, a putative MarR-type TR from P. aeruginosa. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3458 showed changes in the mRNA level of 133 genes; among them, 100 were down-regulated, suggesting the repressor function of PA3458. Concomitantly, ChIP-seq analysis identified more than 300 PA3458 binding sites in P. aeruginosa. The PA3458 regulon encompasses genes involved in stress response, including the PA3459–PA3461 operon, which is divergent to PA3458. This operon encodes an asparagine synthase, a GNAT-family acetyltransferase, and a glutamyl aminopeptidase engaged in the production of N-acetylglutaminylglutamine amide (NAGGN), which is a potent bacterial osmoprotectant. We showed that PA3458-mediated control of PA3459–PA3461 expression is required for the adaptation of P. aeruginosa growth in high osmolarity. Overall, our data indicate that PA3458 plays a role in osmoadaptation control in P. aeruginosa.


2021 ◽  
Vol 22 (14) ◽  
pp. 7287
Author(s):  
Masaki Tanaka ◽  
Shunji Yamada ◽  
Yoshihisa Watanabe

Neuropeptide Y (NPY), an abundant peptide in the central nervous system, is expressed in neurons of various regions throughout the brain. The physiological and behavioral effects of NPY are mainly mediated through Y1, Y2, and Y5 receptor subtypes, which are expressed in regions regulating food intake, fear and anxiety, learning and memory, depression, and posttraumatic stress. In particular, the nucleus accumbens (NAc) has one of the highest NPY concentrations in the brain. In this review, we summarize the role of NPY in the NAc. NPY is expressed principally in medium-sized aspiny neurons, and numerous NPY immunoreactive fibers are observed in the NAc. Alterations in NPY expression under certain conditions through intra-NAc injections of NPY or receptor agonists/antagonists revealed NPY to be involved in the characteristic functions of the NAc, such as alcohol intake and drug addiction. In addition, control of mesolimbic dopaminergic release via NPY receptors may take part in these functions. NPY in the NAc also participates in fat intake and emotional behavior. Accumbal NPY neurons and fibers may exert physiological and pathophysiological actions partly through neuroendocrine mechanisms and the autonomic nervous system.


2021 ◽  
Author(s):  
Chuan Chen ◽  
Wenqiang Liu ◽  
Jiayin Guo ◽  
Yuanyuan Liu ◽  
Xuelian Liu ◽  
...  

AbstractN6-methyladenosine (m6A) on chromosome-associated regulatory RNAs (carRNAs), including repeat RNAs, plays important roles in tuning the chromatin state and transcription, but the intrinsic mechanism remains unclear. Here, we report that YTHDC1 plays indispensable roles in the self-renewal and differentiation potency of mouse embryonic stem cells (ESCs), which highly depends on the m6A-binding ability. Ythdc1 is required for sufficient rRNA synthesis and repression of the 2-cell (2C) transcriptional program in ESCs, which recapitulates the transcriptome regulation by the LINE1 scaffold. Detailed analyses revealed that YTHDC1 recognizes m6A on LINE1 RNAs in the nucleus and regulates the formation of the LINE1-NCL partnership and the chromatin recruitment of KAP1. Moreover, the establishment of H3K9me3 on 2C-related retrotransposons is interrupted in Ythdc1-depleted ESCs and inner cell mass (ICM) cells, which consequently increases the transcriptional activities. Our study reveals a role of m6A in regulating the RNA scaffold, providing a new model for the RNA-chromatin cross-talk.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Barbara Jana ◽  
Jarosław Całka

AbstractUterine inflammation is a very common and serious condition in domestic animals. To development and progression of this pathology often lead disturbances in myometrial contractility. Participation of β1-, β2- and β3-adrenergic receptors (ARs) in noradrenaline (NA)-influenced contractility of the pig inflamed uterus was studied. The gilts of SAL- and E.coli-treated groups were administered saline or E.coli suspension into the uterine horns, respectively. Laparotomy was only done in the CON group. Compared to the period before NA administration, this neurotransmitter reduced the tension, amplitude and frequency in uterine strips of the CON and SAL groups. In the E.coli group, NA decreased the amplitude and frequency, and these parameters were lower than in other groups. In the CON, SAL and E.coli groups, β1- and β3-ARs antagonists in more cases did not significantly change and partly eliminated NA inhibitory effect on amplitude and frequency, as compared to NA action alone. In turn, β2-ARs antagonist completely abolished NA relaxatory effect on these parameters in three groups. Summarizing, NA decreases the contractile amplitude and frequency of pig inflamed uterus via all β-ARs subtypes, however, β2-ARs have the greatest importance. Given this, pharmacological modulation of particular β-ARs subtypes can be used to increase inflamed uterus contractility.


Sign in / Sign up

Export Citation Format

Share Document