Abstract 15137: Detection of Diffuse Myocardial Fibrosis using Multi-slice T1 Mapping by Slice Interleaved T1 (STONE) Sequence in Patients With Hypertrophic Cardiomyopathy

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Shingo Kato ◽  
Sébastien Roujol ◽  
Jihye Jang ◽  
Tamer Basha ◽  
Sophie Berg ◽  
...  

Introduction: In hypertrophic cardiomyopathy (HCM), there are significant variations in left ventricular (LV) wall thickness and fibrosis, which necessitates a volumetric coverage. Slice-interleaved T1 (STONE) mapping sequence allows for the assessment of native T1 time with complete coverage of LV myocardium. Hypothesis: We hypothesized that STONE sequence is useful for the assessment of regional native T1 time abnormality in HCM patients. Methods: Twenty-four septal HCM patients (56±16 years) and 10 healthy adult control subjects (57±15 years) were studied. Native T1 mapping was performed using STONE sequence which enables acquisition of 5 slices in the short-axis plane within a 90 sec free-breathing scan. We measured LV native T1 time and maximum LV wall thickness in each 16 segments from 3 slices (basal-, mid- and apical-slice) and evaluated the relationship between LV native T1 time and wall thickness. Late gadolinium enhanced (LGE) MRI was acquired to assess presence of myocardial enhancement. Results: In HCM patients, LV native T1 time was significantly elevated compared to healthy controls, regardless of presence or absence of LGE (mean native T1 time; LGE (+) segments (n=27), 1139±55 msec; LGE (-) segments (n=351), 1118±55 msec; healthy control (n=160),1065±35 msec; p<0.001 by one-way ANOVA, 6 segments were excluded from analysis due to artifacts). Among 351 segments without LGE, native LV T1 time was diffusely elevated over the 16 segments (Figure). Significant positive correlation was found between LV wall thickness and native LV T1 time (y=1013+8.7x, p<0.001). Conclusions: In HCM, substantial number of segments without LGE showed elevated native T1 time, and native T1 time was correlated with LV wall thickness. Multi-slice T1 mapping by using STONE sequence could be advantageous to overcome limited cardiac coverage of conventional single-slice T1 mapping technique and to accurately detect the diffuse myocardial fibrosis in HCM patients.

Author(s):  
Nahla D. Ali ◽  
Noha Behairy ◽  
Ahmed Kharabish ◽  
Wesam Elmozy ◽  
Ahmed Yahya Hegab ◽  
...  

Abstract Background Hypertrophic cardiomyopathy (HCM) is one of the commonest inheritable cardiac disorders. Being a global disease with diffuse myocardial fibrosis, it has a wide range of adverse outcomes ending with sudden cardiac death. Cardiac magnetic resonance (CMR) with late gadolinium enhancement (LGE) has become a reference standard for visualization of focal myocardial fibrosis. In the setting of less severe or more diffuse fibrosis, LGE is unlikely to reveal the presence of abnormal tissue given the lack of normal myocardium as a reference. Direct measurement of myocardial T1 time (T1 mapping) may improve these methodologic problems of LGE CMR in the setting of diffuse retention of gadolinium-based contrast material. So, we aim at this study to evaluate the clinical application of CMRI native and post-contrast T1 relaxation in assessing diffuse myocardial fibrosis non-invasively in hypertrophic cardiomyopathy. Results There was a significant difference between the percent of fibrosis detected by measuring the extracellular volume percent compared to that detected by LGE, with the former detecting fibrosis in 45.1% of the examined cardiac segments while the latter showed fibrosis in 20.9% of the cardiac segments. Also, measuring the native T1 values showed evidence of fibrosis in about 32.2% of the cardiac segments superseding the percent of fibrosis detected using the LGE alone. The ejection fraction percent showed a negative correlation with the left ventricular mass with a correlation coefficient value of − 0.139 where both interstitial and replacement fibrosis play an important role in the pathophysiology of diastolic dysfunction as well as impairing the myocardial contractility. Also, in cases of obstruction, the extracellular volume (ECV) is more likely to increase in the basal anterior and antero-septal segments as well as the basal inferior segment with P values 0.015, 0.013, and 0.045, respectively. Conclusion Diffuse fibrosis was found to be difficult to be distinguished using LGE. The unique ability of CMR to use proton relaxation times provides a quantitative measurement to detect increased interstitial volume in diffuse myocardial fibrosis. Moreover, it showed that in cases of obstruction, the segments exposed to the highest pressure are more vulnerable to the fibrotic process denoting a relationship between the pressure gradient and the adverse myocardial remodeling.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Radka Kockova ◽  
Petr Kacer ◽  
Jan Pirk ◽  
Jiri Maly ◽  
Martina Vsianska ◽  
...  

Introduction: Diffuse myocardial fibrosis (DFM) is the major mechanism in the pathophysiology of the aortic stenosis and its complications. DMF is detectable by magnetic resonance imaging (MRI) using the T1 mapping technique. Hypothesis: The MRI derived native T1 relaxation time and myocardial extracellular volume fraction (ECV) will be significantly related to the extent of DMF et targeted myocardial left ventricular (LV) biopsy. Methods: The study population consisted of 40 consecutive patients (age 63±8y, 65% males) undergoing surgery for severe aortic stenosis (77.5%), aortic root dilatation (7.5%) or valve regurgitation (15%). All patients underwent MRI-derived T1 mapping and 2D-, 3D speckle tracking-derived strain analysis prior to surgery. The T1 relaxation time was assessed in basal interventricular septum pre and 10 min post contrast administration using the modified Look-Locker Inversion recovery sequence. A LV myocardial biopsy specimen was obtained during surgery from basal interventricular septum under the guidance of the MRI operator to assure spatial concordance with the MRI assessment. The percentage of myocardial collagen was quantified as a ratio of Picrosirius Red-positive area over total sample area using the Image J. Results: The average percentage of myocardial collagen was 22 ± 14.8 %. The average native T1 relaxation time and ECV was 1010 ± 48 ms and 0.288 ± 0.055, respectively. Both native T1 relaxation time with cutoff value of ≥ 1010 ms (Ss=90%, Sp=73%, AUC =0.82) and ECV with cutoff value of ≥ 0.315 (Ss=80%, Sp=90%, AUC =0.85) showed high accuracy to identify extensive (> 30%) myocardial collagen content (Figure 1A, 1B). The native T1 mapping showed significant correlation with LV mass, 2D and 3D global longitudinal strain (all p<0.05) while the ECV did not (p=NS). Conclusions: Native T1 relaxation time is the accurate marker of diffuse myocardial fibrosis with the significant relationship with LV morphology and myocardial function.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
H Vago ◽  
Z Dohy ◽  
L Szabo ◽  
CS Czimbalmos ◽  
FI Suhai ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): National Research, Development and Innovation Fund of Hungary Background Intensive physical exercise leads to structural and functional cardiac adaptation termed athlete’s heart. Cardiac magnetic resonance (CMR) has an important role in the differentiation of physiological adaptation and pathological conditions. Beside the precise measurement of the ventricular volumes, mass, and function, it provides tissue specific information. Recently, native T1 mapping technique has been applied as a non-contrast method to detect myocardial fibrosis. Previous studies suggested that native T1 mapping can identify myocardial pathology before other CMR imaging techniques. T2 mapping values are elevated in case of myocardial edema. Purpose The aim of our study was to investigate the differences in CMR characteristics especially the native T1 and T2 mapping values of highly trained healthy athletes, healthy controls and patients with hypertrophic cardiomyopathy (HCM). Methods A total of 43 healthy athletes (water polo, swimming, football, 22 ± 8 training hours/week), 27 non-athlete healthy control and 25 HCM patients were involved in the study. Our inclusion criteria were: age &gt;18 years,  in the athlete group &gt;7 training hours per week . We evaluated the left ventricular (LV) end-systolic, end-diastolic (EDVi) and stroke volume (SVi) index, mass index (LVMi), ejection fraction (EF) and maximal end-diastolic wall thickness (EDWT). In a basal short axis slice the native T1 and T2 mapping values were evaluated. Results Athletes had significantly higher LV volumes compared to the control and HCM group (LVEDVi 114 ± 13 vs. 86 ± 11; 84 ± 15  ml/m2, LVSVi 64 ± 7 vs. 51 ± 7; 54 ± 10 ml/m2, respectively, p &lt; 0.0001). HCM patients had the highest LVMi (72 ± 14 g/m2) and EDWT (18 ± 4 mm) compared to athletes and controls, athletes had higher LVMi (60 ± 11 vs. 42 ± 8 g/m2) and EDWT (10 ± 2 vs. 8 ± 1 mm) compared to the controls (p &lt; 0.001). The native T1 mapping values differed significantly in the three groups, athletes had the lowest, HCM patients had the highest T1 values (athletes: 956 ± 19 ms, controls: 971 ± 20 ms, HCM patients: 993 ± 39 ms; p &lt; 0.0001). There was no difference in the T2 mapping values between athletes and controls (44 ± 2 vs. 43 ± 2 ms), HCM patients had higher T2 values (45 ± 2 ms) compared to the other two groups (p &lt; 0.01). Conclusion Intensive and regular training may lead to tissue specific changes of the myocardium. T1 and T2 mapping are potentially useful tools for differentiating between athlete"s heart and patients with hypertrophic cardiomyopathy. Abstract Figure. T1 mapping in HCM and athlete


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Promporn Suksaranjit ◽  
Brent D Wilson ◽  
Christopher J McGann ◽  
Eugene G Kholmovski ◽  
Imran Haider ◽  
...  

Introduction: Atrial fibrillation (AF) is associated with diffuse myocardial fibrosis as quantified by cardiac magnetic resonance (CMR) using T1 mapping methods. Radiofrequency catheter ablation (RFCA) is evolving, and the role in rhythm control may be ideal for reversing left ventricular (LV) remodeling. Hypothesis: We aimed to study the impact of RFCA on diffuse myocardial fibrosis in AF patients. Methods: We retrospectively collected data from consecutive AF patients who underwent RFCA with modified Look-Locker Inversion recovery T1 mapping sequences on pre/post procedural CMR at 3.0-Tesla. Precontrast T1 relaxation time of the mid-LV short-axis view was used as an index of diffuse LV fibrosis. Primary outcome was the change in diffuse LV fibrosis after RFCA. Results: A total of 11 patients (mean age 67 years, 72% male, 67% paroxysmal AF) were enrolled. Median AF duration was 24.6 months [Interquartile range (IQR): 13.3-45.3)] and median CHA2DS2-VASc was 2 [IQR: 1-3]. Post RFCA CMR was obtained 99.5±18.1 days after the RFCA procedure. Mean precontrast T1 time was significantly lower after RFCA (1182ms vs 1158ms; p=0.0157). Conclusions: Based on our preliminary results, RFCA in AF reduces diffuse myocardial fibrosis and may play a role in reverse LV remodeling.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 26-27
Author(s):  
Alessia Pepe ◽  
Nicola Martini ◽  
Antonio De Luca ◽  
Vincenzo Positano ◽  
Laura Pistoia ◽  
...  

Background.Cardiovascular magnetic resonance (CMR) is the only available technique for the non-invasive quantification of MIO. The native T1 mapping has recently been proposed as an alternative to the universally adopted T2* technique, due to the higher sensitivity for detection of changes associated with mild or early iron overload. Objective.To study the association between T1 values and left ventricular (LV) function in thalassemia major (TM) and to evaluate for the first time if T1 measurements quantifying MIO are influenced by macroscopic myocardial fibrosis. Methods.146 TM patients (87 females, 38.7±11.1 years) consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia Network underwent CMR. Native T1 values were obtained by Modified Look-Locker Inversion recovery (MOLLI) sequence in all 16 myocardial segments and the global value was the mean. LV function parameters were quantified by cine images. Late gadolinium enhancement (LGE) technique was used to detect macroscopic myocardial fibrosis. Results.No correlation was detected between global heart T1 values and LV volume indexes, LV mass index, or LV ejection fraction. Foourteen (9.6%) patients had an abnormal LV motion (13 hypokinesia and 1 dyskinesia) and they showed significantly lower global heart T1 values than patients without LV motion abnormalities (883.8±139.7 ms vs 959.0±91.3 ms; P=0.049). LGE images were acquired in 88 patients (60.3%) and macroscopic myocardial fibrosis was detected in 36 patients (40.9%). The 72.2% of patients had two or more foci of fibrosis. Patients with macroscopic myocardial fibrosis had significantly lower global heart T1 values (921.3±100.3 ms vs 974.5±72.7 ms; P=0.027) (Figure 1A). Data about the LGE was present for 1408 segments (88 patients x 16 segments) and 105 (7.5%) were positive. Segments with LGE had significantly lower T1 values than segments LGE-negative (905.6±110.6 ms vs 956.9±103.8 ms; P&lt;0.0001) (Figure 1B). Conclusion.No correlation between T1 values and LV function parameters was detected, probably because the majority of the patients had normal or mild abnormal LV parameters. TM patients with macroscopic myocardial fibrosis showed significantly lower T1 values suggesting that T1 measurements for quantifying MIO are not influenced by macroscopic myocardial fibrosis and an association between myocardial iron and macroscopic fibrosis, previously detected only in pediatric TM patients. Figure Disclosures Pepe: Chiesi Farmaceutici S.p.A.:Other: no profit support and speakers' honoraria;Bayer:Other: no profit support;ApoPharma Inc.:Other: no profit support.Pistoia:Chiesi Farmaceutici S.p.A.:Other: speakers' honoraria.Meloni:Chiesi Farmaceutici S.p.A.:Other: speakers' honoraria.


Global Heart ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e10
Author(s):  
Andris H. Ellims ◽  
James A. Shaw ◽  
Dion Stub ◽  
Leah M. Iles ◽  
James L. Hare ◽  
...  

2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
D Lavall ◽  
NH Vosshage ◽  
S Stoebe ◽  
T Denecke ◽  
A Hagendorff ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Purpose The aim of this study was to investigate native T1 mapping cardiac magnetic resonance (CMR) tomography for the differential diagnosis of left ventricular (LV) hypertrophy. Background Mapping techniques are useful to characterize myocardial tissue abnormalities, particularly cardiac amyloidosis. However, specific cut-off values to differentiate LV hypertrophic phenotypes on 3.0 tesla CMR scanners have not been established, yet. Methods We retrospectively identified patients in the CMR database of Leipzig university hospital with increased LV wall thickness (≥12mm diameter at end-diastole) who were referred for the evaluation of LV hypertrophy or ischemia between 2017 and 2020 on a 3T scanner (Philips Achieva). Patients with suspected or confirmed myocarditis were excluded. Diagnosis of cardiac amyloidosis was made by either biopsy or non-invasively by bone scintigraphy and screening for monoclonal gammopathy. T1 mapping was measured as global mean value from 3 short axis slices of the LV. Results 128 consecutive patients were included in the study. 31 subjects without evidence of structural heart disease served as healthy control. The final diagnosis was cardiac amyloidosis in 24 patients (5 patients with light-chain, 18 with transthyretin amyloidosis, 1 undetermined), hypertrophic cardiomyopathy in 24, and hypertensive heart disease in 80 patients. Mean age of patients was 65 ± 13years, 84% were male. LV mass was increased in patients with LV hypertrophy compared to healthy control (p &lt; 0.001). Native T1 values of the LV myocardium were higher in patients with cardiac amyloidosis (1409 ± 59ms, p &lt; 0.0001 vs. all other groups) compared to healthy control (1225 ± 21ms), patients with hypertrophic cardiomyopathy (HCM; 1263 ± 43ms) and hypertensive heart disease (HHD; 1257 ± 41ms) (Figure). Patients with hypertrophic cardiomyopathy and hypertensive heart disease did not differ in their native T1 values, but both groups were increased compared to healthy control (p &lt; 0.01). Receiver operating characteristic analysis of native T1 values demonstrated an area under the curve for the detection of cardiac amyloidosis of 0.9954 (p &lt; 0.0001) vs. hypertrophic cardiomyopathy, hypertensive heart disease and healthy control. The optimal cut-off value was 1341ms, with a sensitivity of 100% and a specificity of 97%. Conclusion Native T1 mapping has high diagnostic accuracy for the diagnosis of cardiac amyloidosis among patients with LV hypertrophy. These data need confirmation in a prospective clinical trial. Study ID DRKS00022048


Sign in / Sign up

Export Citation Format

Share Document