Abstract 17189: Reprogramming of Fibroblasts Into Cardiac Progenitor Cells Using Crispr Activation System

Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Lin Jiang ◽  
Jialiang Liang ◽  
Wei Huang ◽  
Christian Paul ◽  
Yigang Wang

Background and Objective: CRISPR tools that allow for precise manipulation of individual loci have not been used in generation of i nduced c ardiac p rogenitor c ells ( iCPC s). This study was designed to determine the feasibility and effectiveness of reprogramming fibroblasts into iCPC using CRISPR activation (CRISPRa) system. Methods: Tail-tip fibroblasts (TTFs) were isolated from Nkx2-5 cardiac enhancer GFP reporter mice. A gRNA pool targeting 17 progenitor genes was synthesized and transduced with dCas9-VP64 lentivirus into TTFs ( Fig.1A ). The phenotype of iCPCs was then characterized by immunostaining and FACS of progenitor markers. Finally, the cardiac-lineage differentiation potential of iCPCs was determined by immunostaining and electrophysiological assay under defined induction mediums. Results: iCPCs with GFP expression were formed in TTFs after transduction of CRISPRa targeting Isl1 , Gata4 , Baf60c , Tbx5 and Nkx2-5 (Fig.1B), while GFP was not activated by control virus. Cardiac progenitor markers were activated in iCPCs as shown by immunostaining (Fig.1C). The generation efficiency of Flk1-postive iCPCs induced by CRISPRa was ~60% as showed by FACS. iCPCs can be differentiated into cardiomyocytes as identified by immunostaining of cardiac-specific markers (Fig.1D). The iCPC-derived cardiomyocytes displayed spontaneous beating and showed cardiac action potentials (Fig.1E). Conclusion: The CRISPRa system is an efficient and specific way to generate iCPCs, which could provide a novel source of cells for cardiac regenerative medicine.

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Yi-gang Wang ◽  
Lin Jiang ◽  
Jialiang Liang ◽  
Wei Huang ◽  
Christian Paul

Background and Objective: CRISPR tools that allow for precise manipulation of individual loci have not been used in generation of i nduced c ardiac p rogenitor c ells ( iCPC s). This study was designed to determine the feasibility and effectiveness of reprogramming fibroblasts into iCPC using CRISPR activation (CRISPRa) system. Methods: Tail-tip fibroblasts (TTFs) were isolated from Nkx2-5 cardiac enhancer GFP reporter mice. A gRNA pool targeting 17 progenitor genes was synthesized and transduced with dCas9-VP64 lentivirus into TTFs ( Fig.1A ). The phenotype of iCPCs was then characterized by immunostaining and FACS of progenitor markers. Finally, the cardiac-lineage differentiation potential of iCPCs was determined by immunostaining and electrophysiological assay under defined induction mediums. Results: iCPCs with GFP expression were formed in TTFs after transduction of CRISPRa targeting Isl1, Gata4, Baf60c, Tbx5 and Nkx2-5 (Fig.1B), while GFP was not activated by control virus. Cardiac progenitor markers were activated in iCPCs as shown by immunostaining (Fig.1C). The generation efficiency of Flk1-postive iCPCs induced by CRISPRa was ~60% as showed by FACS. iCPCs can be differentiated into cardiomyocytes as identified by immunostaining of cardiac-specific markers (Fig.1D). The iCPC-derived cardiomyocytes displayed spontaneous beating and showed cardiac action potentials (Fig.1E). Conclusion: The CRISPRa system is an efficient and specific way to generate iCPCs, which could provide a novel source of cells for cardiac regenerative medicine. Conversion of fibroblasts into cardiac progenitors poses a novel therapeutic option for repair of myocardial infarction.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 424-424
Author(s):  
Yukiko Doi ◽  
Takafumi Yokota ◽  
Yusuke Satoh ◽  
Tomoaki Ueda ◽  
Yasuhiro Shingai ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are purified well using a combination of surface markers. However, even highly enriched HSC fractions have heterogeneity in their self-renewal and differentiation potential. These seemingly contradictory roles are well regulated according to the changing demand for blood cells. Hence, interactions among lineage-related genes need to be set up, as their differentiation potential is restricted. However, how the functional diversity of HSCs reflects their intrinsic gene expression is not yet known. We previously identified special AT-rich sequence binding protein 1 (SATB1), a global chromatin organizer, as a lymphoid-inducing gene in HSCs (Immunity 2013). SATB1 overexpression strongly enhanced lymphopoiesis from murine HSCs, whereas SATB1 deficiency caused HSC malfunctions. Furthermore, another report showed that SATB1-deficient HSCs were less quiescent and differentiated preferentially to myeloid-erythroid lineages (Nat Immunol 2013). These results suggested that SATB1 is indispensable not only for the lymphopoietic potential but also for the normal function of HSCs. In this study, we first prepared hematological-lineage restricted SATB1 conditional knock out (cKO) mice to examine whether SATB1 is essential for normal HSC function in the adult bone marrow (BM). We crossed SATB1-flox mice with Cre-recombinase expressing mice under control of the Tie2 gene promoter, which efficiently inactivated the target gene in HSCs. Analyzing the BM in these mice, we observed a significant decrease in the number of HSCs as compared to those in their wild type (WT) littermates. Next, we collected HSCs from WT and Tie2-Cre SATB1-flox cKO mice using flow cytometry, and transplanted these CD45.2+ HSCs into CD45.1+ congenic mice. The chimerism of the transplanted cells was lower in recipients of SATB1 cKO mice-derived HSCs. Evaluation of the lymphocytic potential in a co-culture with MS5 stromal cells revealed that the output of lymphocytes from SATB1-cKO HSCs was lower than that of WT HSCs. Secondly, we generated SATB1 reporter mice in which SATB1 expression can be precisely monitored in vivo, and examined the early differentiation of HSCs. We found that the HSC fraction of adult BM consists of SATB1− and SATB1+ cells. We sorted the two types of HSCs with high purity and compared their growth and differentiation potential in vitro and in vivo. In methylcellulose colony assays, SATB1+ HSCs were less potent for producing myeloid-erythroid lineage colonies. In the co-culture with MS5 stromal cells, the output of lymphocytes from SATB1+ HSCs was more robust than that from SATB1− HSCs. RNA-sequencing data showed that the expression of many lymphocyte-related genes was upregulated in the SATB1+ HSCs compared to that in the SATB1− HSCs; however, there were no significant differences between the expression of stem cell-related genes in the two HSC types. In serial transplantation experiments, the SATB1+ HSCs produced more lymphocytic cells and fewer myeloid cells in the first recipients. Moreover, both types of HSCs could equally reconstitute the complete HSC fraction that contained SATB1− and SATB1+ cells, and successfully reconstituted lympho-hematopoiesis in the secondary recipients. In a study with SATB1-cKO mice, we found that SATB1 is indispensable for the preservation of the HSC potential for self-renewing proliferation and lymphocyte-differentiation. These results suggest that SATB1 plays a critical role for HSC integrity. With the newly generated SATB1 reporter mice, we confirmed the heterogeneity of HSCs. While the SATB1− and SATB1+ HSCs significantly differed in lineage-differentiation potential, both showed high long-term self-renewing capacity and reciprocal reconstitution in the serial transplantation. The cell dividing flow of the two HSC fractions settled in the same trajectory in the primary recipients, and then demonstrated equal ability for self-renewal and differentiation in the secondary recipients. Thus, we successfully isolated authentic lymphoid lineage-biased HSCs using SATB1 expression levels, and our results shed light on the oscillating nature of HSCs. Therefore, we conclude that the SATB1 expression demonstrates the fluctuation of HSCs with respect to the lineage-differentiation potential, and that SATB1 probably contributes to generation of chromatin loop formation, which endows HSCs with robust lymphopoietic potential. Disclosures Doi: Yakult Honsha Co.,Ltd.: Speakers Bureau. Yokota:SHIONOGI & CO., LTD.: Research Funding. Shibayama:Novartis Pharma: Honoraria, Research Funding, Speakers Bureau; Celgene: Honoraria, Research Funding, Speakers Bureau; Takeda: Speakers Bureau; Chugai Pharmaceutical: Speakers Bureau; Ono Pharmaceutical: Speakers Bureau. Kanakura:Chugai Pharmaceutical: Research Funding; Eisai: Research Funding; Astellas: Research Funding; Toyama Chemical: Research Funding; Fujimotoseiyaku: Research Funding; Kyowa Hakko Kirin: Research Funding; Shionogi: Research Funding; Alexionpharma: Research Funding; Pfizer: Research Funding; Bristol Myers: Research Funding; Nippon Shinyaku: Research Funding.


2018 ◽  
Author(s):  
Steven Boggess ◽  
Shivaani Gandhi ◽  
Brian Siemons ◽  
Nathaniel Huebsch ◽  
Kevin Healy ◽  
...  

<div> <p>The ability to non-invasively monitor membrane potential dynamics in excitable cells like neurons and cardiomyocytes promises to revolutionize our understanding of the physiology and pathology of the brain and heart. Here, we report the design, synthesis, and application of a new class of fluorescent voltage indicator that makes use of a fluorene-based molecular wire as a voltage sensing domain to provide fast and sensitive measurements of membrane potential in both mammalian neurons and human-derived cardiomyocytes. We show that the best of the new probes, fluorene VoltageFluor 2 (fVF 2) readily reports on action potentials in mammalian neurons, detects perturbations to cardiac action potential waveform in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes, shows a substantial decrease in phototoxicity compared to existing molecular wire-based indicators, and can monitor cardiac action potentials for extended periods of time. Together, our results demonstrate the generalizability of a molecular wire approach to voltage sensing and highlights the utility of fVF 2 for interrogating membrane potential dynamics.</p> </div>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cong Fan ◽  
Xiaohan Ma ◽  
Yuejun Wang ◽  
Longwei Lv ◽  
Yuan Zhu ◽  
...  

Abstract Background MicroRNAs have been recognized as critical regulators for the osteoblastic lineage differentiation of human adipose-derived stem cells (hASCs). Previously, we have displayed that silencing of miR-137 enhances the osteoblastic differentiation potential of hASCs partly through the coordination of lysine-specific histone demethylase 1 (LSD1), bone morphogenetic protein 2 (BMP2), and mothers against decapentaplegic homolog 4 (SMAD4). However, still numerous molecules involved in the osteogenic regulation of miR-137 remain unknown. This study aimed to further elucidate the epigenetic mechanisms of miR-137 on the osteogenic differentiation of hASCs. Methods Dual-luciferase reporter assay was performed to validate the binding to the 3′ untranslated region (3′ UTR) of NOTCH1 by miR-137. To further identify the role of NOTCH1 in miR-137-modulated osteogenesis, tangeretin (an inhibitor of NOTCH1) was applied to treat hASCs which were transfected with miR-137 knockdown lentiviruses, then together with negative control (NC), miR-137 overexpression and miR-137 knockdown groups, the osteogenic capacity and possible downstream signals were examined. Interrelationships between signaling pathways of NOTCH1-hairy and enhancer of split 1 (HES1), LSD1 and BMP2-SMADs were thoroughly investigated with separate knockdown of NOTCH1, LSD1, BMP2, and HES1. Results We confirmed that miR-137 directly targeted the 3′ UTR of NOTCH1 while positively regulated HES1. Tangeretin reversed the effects of miR-137 knockdown on osteogenic promotion and downstream genes expression. After knocking down NOTCH1 or BMP2 individually, we found that these two signals formed a positive feedback loop as well as activated LSD1 and HES1. In addition, LSD1 knockdown induced NOTCH1 expression while suppressed HES1. Conclusions Collectively, we proposed a NOTCH1/LSD1/BMP2 co-regulatory signaling network to elucidate the modulation of miR-137 on the osteoblastic differentiation of hASCs, thus providing mechanism-based rationale for miRNA-targeted therapy of bone defect.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Gokulakrishnan Iyer ◽  
Michael E Davis

Cardiac diseases are the leading causes of death throughout the world and transplantation of endogenous myocardial progenitor population with robust cardiovascular lineage differentiation potential is a promising therapeutic strategy. Therefore, in vitro expansion and transplantation of cardiac progenitor cells (CPCs) is currently in early clinical testing as a potential treatment for severe cardiac dysfunction. However, poor survival and engraftment of cells is one of the major limitations of cell transplantation therapy. Oxidative stress is increased in the ischemic myocardium and indirect inferences suggest the vulnerability of CPCs to oxidative stress. In this study, we show that in vitro, resident c-kit positive CPCs isolated from rat myocardium are significantly (p<0.05) resistant to superoxide-induced apoptosis compared to cardiomyocytes as analyzed by the number of sub-G1 population following xanthine/xanthine oxidase treatment. Interestingly, CPCs have two to four fold higher basal SOD1 and SOD2 activities (p<0.01) compared to cardiomyocytes and endothelial cells. Superoxide treatment increased expression of SOD1 (p<0.01), SOD2 (p<0.01), and glutathione peroxidase (p<0.05) mRNAs within 6 h of treatment compared to control cells. Recent studies suggest the involvement of AKT in controlling cell death, survival and also expression of SOD enzymes. Therefore, we investigated the involvement of AKT in CPCs subjected to oxidative stress. Western blot analysis revealed that the amount of phosphorylated AKT increased significantly within 10 minutes of xanthine/xanthine oxidase treatment. In addition, treatment with LY294002 - a PI3 kinase/AKT inhibitor, increased apoptosis in CPCs treated with superoxide. Our studies demonstrate a novel finding in which resident progenitor cells are protected from oxidative injury by containing higher basal levels of antioxidants as compared to myocytes. Moreover, under oxidant challenge antioxidant levels are regulated, possibly in an AKT-dependent manner. Further elucidation of this pathway may lead to novel therapeutic opportunities.


2021 ◽  
Author(s):  
José Guilherme Chaui-Berlinck ◽  
Vitor Rodrigues da Silva

Author(s):  
Maria P. Hortigon-Vinagre ◽  
Victor Zamora ◽  
Gary Gintant ◽  
Jonathon Green ◽  
Francis L. Burton ◽  
...  

2017 ◽  
Vol 114 (35) ◽  
pp. E7367-E7376 ◽  
Author(s):  
Rene Barro-Soria ◽  
Rosamary Ramentol ◽  
Sara I. Liin ◽  
Marta E. Perez ◽  
Robert S. Kass ◽  
...  

KCNE β-subunits assemble with and modulate the properties of voltage-gated K+ channels. In the heart, KCNE1 associates with the α-subunit KCNQ1 to generate the slowly activating, voltage-dependent potassium current (IKs) in the heart that controls the repolarization phase of cardiac action potentials. By contrast, in epithelial cells from the colon, stomach, and kidney, KCNE3 coassembles with KCNQ1 to form K+ channels that are voltage-independent K+ channels in the physiological voltage range and important for controlling water and salt secretion and absorption. How KCNE1 and KCNE3 subunits modify KCNQ1 channel gating so differently is largely unknown. Here, we use voltage clamp fluorometry to determine how KCNE1 and KCNE3 affect the voltage sensor and the gate of KCNQ1. By separating S4 movement and gate opening by mutations or phosphatidylinositol 4,5-bisphosphate depletion, we show that KCNE1 affects both the S4 movement and the gate, whereas KCNE3 affects the S4 movement and only affects the gate in KCNQ1 if an intact S4-to-gate coupling is present. Further, we show that a triple mutation in the middle of the transmembrane (TM) segment of KCNE3 introduces KCNE1-like effects on the second S4 movement and the gate. In addition, we show that differences in two residues at the external end of the KCNE TM segments underlie differences in the effects of the different KCNEs on the first S4 movement and the voltage sensor-to-gate coupling.


Sign in / Sign up

Export Citation Format

Share Document