Abstract 16955: Contrasting Effects of Smooth Muscle TRPV4 Channels on Vascular Function

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
YEN LIN CHEN ◽  
Zdravka Daneva ◽  
Swapnil K. Sonkusare

Introduction: Transient receptor potential vanilloid 4 (TRPV4) channels are a major Ca 2+ entry pathway in vascular endothelial cells. TRPV4 channels are also expressed in vascular smooth muscle cells (SMC). However, the effect of SMC TRPV4 (TRPV4 SMC ) channels on vascular resistance and blood pressure remains controversial. Hypothesis: We hypothesized that TRPV4 SMC channels are essential regulators of vascular function and blood pressure. Methods: Inducible, SMC-specific TRPV4 knockout (TRPV4 SMC -/- ) mice were used. Blood pressure was monitored using radiotelemetry catheters. SMC Ca 2+ signals were recorded with a spinning disk confocal imaging system. Pressure myography studies assessed vascular reactivity in MAs. Results: Resting diastolic blood pressure and mean arterial pressure were lower in TRPV4 SMC -/- mice when compared to control mice. Selective TRPV4 channel agonist, GSK1016790A (GSK101), induced Ca 2+ influx signals in SMCs that were inhibited by TRPV4 channel inhibitor GSK2193874 and were absent in MAs from TRPV4 SMC -/- mice. In pressure myography studies, GSK101 constricted the MAs in control mice, but not in TRPV4 SMC -/- mice. Moreover, MAs from TRPV4 SMC -/- showed lower vasoconstriction in response to phenylephrine, a α1 adrenergic receptor agonist. These results indicated that Ca 2+ influx through TRPV4 SMC channels contributes to vasoconstriction and increased vascular resistance. However, studies of pressure-induced constriction or myogenic tone indicated that MAs from TRPV4 SMC -/- mice exhibit a higher myogenic constriction at pressures ≥ 60 mm Hg. Moreover, membrane depolarization-induced vasoconstriction (KCl, 33 and 60 mM) was also increased in TRPV4 SMC -/- mice when compared to the control mice, indicating that TRPV4 SMC channels oppose pressure- or membrane depolarization-induced vasoconstriction. Conclusions: TRPV4 SMC channels are essential regulators of resting blood pressure. While TRPV4 SMC channels contribute to α1 adrenergic receptor-induced vasoconstriction, they negatively regulate pressure-induced vasoconstriction. The divergent effects of TRPV4 SMC channels on vascular function may be determined by the selective stimulus-TRPV4 SMC channel coupling and downstream signaling mechanisms.

2014 ◽  
Vol 143 (5) ◽  
pp. 559-575 ◽  
Author(s):  
Jose Mercado ◽  
Rachael Baylie ◽  
Manuel F. Navedo ◽  
Can Yuan ◽  
John D. Scott ◽  
...  

Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels expressed in multiple tissues, including smooth muscle. Although TRPV4 channels play a key role in regulating vascular tone, the mechanisms controlling Ca2+ influx through these channels in arterial myocytes are poorly understood. Here, we tested the hypothesis that in arterial myocytes the anchoring protein AKAP150 and protein kinase C (PKC) play a critical role in the regulation of TRPV4 channels during angiotensin II (AngII) signaling. Super-resolution imaging revealed that TRPV4 channels are gathered into puncta of variable sizes along the sarcolemma of arterial myocytes. Recordings of Ca2+ entry via single TRPV4 channels (“TRPV4 sparklets”) suggested that basal TRPV4 sparklet activity was low. However, Ca2+ entry during elementary TRPV4 sparklets was ∼100-fold greater than that during L-type CaV1.2 channel sparklets. Application of the TRPV4 channel agonist GSK1016790A or the vasoconstrictor AngII increased the activity of TRPV4 sparklets in specific regions of the cells. PKC and AKAP150 were required for AngII-induced increases in TRPV4 sparklet activity. AKAP150 and TRPV4 channel interactions were dynamic; activation of AngII signaling increased the proximity of AKAP150 and TRPV4 puncta in arterial myocytes. Furthermore, local stimulation of diacylglycerol and PKC signaling by laser activation of a light-sensitive Gq-coupled receptor (opto-α1AR) resulted in TRPV4-mediated Ca2+ influx. We propose that AKAP150, PKC, and TRPV4 channels form dynamic subcellular signaling domains that control Ca2+ influx into arterial myocytes.


Circulation ◽  
2020 ◽  
Vol 141 (16) ◽  
pp. 1318-1333 ◽  
Author(s):  
Matteo Ottolini ◽  
Kwangseok Hong ◽  
Eric L. Cope ◽  
Zdravka Daneva ◽  
Leon J. DeLalio ◽  
...  

Background: Impaired endothelium-dependent vasodilation is a hallmark of obesity-induced hypertension. The recognition that Ca 2+ signaling in endothelial cells promotes vasodilation has led to the hypothesis that endothelial Ca 2+ signaling is compromised during obesity, but the underlying abnormality is unknown. In this regard, transient receptor potential vanilloid 4 (TRPV4) ion channels are a major Ca 2+ influx pathway in endothelial cells, and regulatory protein AKAP150 (A-kinase anchoring protein 150) enhances the activity of TRPV4 channels. Methods: We used endothelium-specific knockout mice and high-fat diet–fed mice to assess the role of endothelial AKAP150-TRPV4 signaling in blood pressure regulation under normal and obese conditions. We further determined the role of peroxynitrite, an oxidant molecule generated from the reaction between nitric oxide and superoxide radicals, in impairing endothelial AKAP150-TRPV4 signaling in obesity and assessed the effectiveness of peroxynitrite inhibition in rescuing endothelial AKAP150-TRPV4 signaling in obesity. The clinical relevance of our findings was evaluated in arteries from nonobese and obese individuals. Results: We show that Ca 2+ influx through TRPV4 channels at myoendothelial projections to smooth muscle cells decreases resting blood pressure in nonobese mice, a response that is diminished in obese mice. Counterintuitively, release of the vasodilator molecule nitric oxide attenuated endothelial TRPV4 channel activity and vasodilation in obese animals. Increased activities of inducible nitric oxide synthase and NADPH oxidase 1 enzymes at myoendothelial projections in obese mice generated higher levels of nitric oxide and superoxide radicals, resulting in increased local peroxynitrite formation and subsequent oxidation of the regulatory protein AKAP150 at cysteine 36, to impair AKAP150-TRPV4 channel signaling at myoendothelial projections. Strategies that lowered peroxynitrite levels prevented cysteine 36 oxidation of AKAP150 and rescued endothelial AKAP150-TRPV4 signaling, vasodilation, and blood pressure in obesity. Peroxynitrite-dependent impairment of endothelial TRPV4 channel activity and vasodilation was also observed in the arteries from obese patients. Conclusions: These data suggest that a spatially restricted impairment of endothelial TRPV4 channels contributes to obesity-induced hypertension and imply that inhibiting peroxynitrite might represent a strategy for normalizing endothelial TRPV4 channel activity, vasodilation, and blood pressure in obesity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Liangliang Liu ◽  
Mengting Guo ◽  
Xiaowang Lv ◽  
Zhiwei Wang ◽  
Jigang Yang ◽  
...  

Transient receptor potential vanilloid 4 (TRPV4) channels are widely expressed in systemic tissues and can be activated by many stimuli. TRPV4, a Ca2+-permeable cation channel, plays an important role in the vasculature and is implicated in the regulation of cardiovascular homeostasis processes such as blood pressure, vascular remodeling, and pulmonary hypertension and edema. Within the vasculature, TRPV4 channels are expressed in smooth muscle cells, endothelial cells, and perivascular nerves. The activation of endothelial TRPV4 contributes to vasodilation involving nitric oxide, prostacyclin, and endothelial-derived hyperpolarizing factor pathways. TRPV4 activation also can directly cause vascular smooth muscle cell hyperpolarization and vasodilation. In addition, TRPV4 activation can evoke constriction in some specific vascular beds or under some pathological conditions. TRPV4 participates in the control of vascular permeability and vascular damage, particularly in the lung capillary endothelial barrier and lung injury. It also participates in vascular remodeling regulation mainly by controlling vasculogenesis and arteriogenesis. This review examines the role of TRPV4 in vascular function, particularly in vascular dilation and constriction, vascular permeability, vascular remodeling, and vascular damage, along with possible mechanisms, and discusses the possibility of targeting TRPV4 for therapy.


2014 ◽  
Vol 306 (4) ◽  
pp. H574-H584 ◽  
Author(s):  
Jack Rubinstein ◽  
Valerie M. Lasko ◽  
Sheryl E. Koch ◽  
Vivek P. Singh ◽  
Vinicius Carreira ◽  
...  

Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid.


2015 ◽  
Vol 309 (7) ◽  
pp. F604-F616 ◽  
Author(s):  
R. Todd Alexander ◽  
Megan R. Beggs ◽  
Reza Zamani ◽  
Niels Marcussen ◽  
Sebastian Frische ◽  
...  

Plasma membrane Ca2+-ATPases (PMCAs) participate in epithelial Ca2+ transport and intracellular Ca2+ signaling. The Pmca4 isoform is enriched in distal nephron isolates and decreased in mice lacking the epithelial transient receptor potential vanilloid 5 Ca2+ channel. We therefore hypothesized that Pmca4 plays a significant role in transcellular Ca2+ flux and investigated the localization and regulation of Pmca4 in Ca2+-transporting epithelia. Using antibodies directed specifically against Pmca4, we found it expressed only in the smooth muscle layer of mouse and human intestines, whereas pan-specific Pmca antibodies detected Pmca1 in lateral membranes of enterocytes. In the kidney, Pmca4 showed broad localization to the distal nephron. In the mouse, expression was most abundant in segments coexpressing the epithelial ransient receptor potential vanilloid 5 Ca2+ channel. Significant, albeit lower, expression was also evident in the region encompassing the cortical thick ascending limbs, macula densa, and early distal tubules as well as smooth muscle layers surrounding renal vessels. In the human kidney, a similar pattern of distribution was observed, with the highest PMCA4 expression in Na+-Cl− cotransporter-positive tubules. Electron microscopy demonstrated Pmca4 localization in distal nephron cells at both the basolateral membrane and intracellular perinuclear compartments but not submembranous vesicles, suggesting rapid trafficking to the plasma membrane is unlikely to occur in vivo. Pmca4 expression was not altered by perturbations in Ca2+ balance, pointing to a housekeeping function of the pump in Ca2+-transporting epithelia. In conclusion, Pmca4 shows a divergent expression pattern in Ca2+-transporting epithelia, inferring diverse roles for this isoform not limited to transepithelial Ca2+ transport.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
David Zhang ◽  
Suelhem Mendoza ◽  
Aaron Bubolz ◽  
Makoto Suzuki ◽  
David Gutterman

Agonist-induced Ca 2+ entry in endothelial cells is important for the synthesis and release of vasoactive factors, although mechanisms of Ca 2+ entry remain largely unknown. Emerging evidence suggests that the transient receptor potential vanilloid 4 (TRPV4) channel, a Ca 2+ -permeant TRP channel, is expressed in endothelial cells and may be involved in the regulation of vascular tone. Here we investigated the potential role of TRPV4 channels in acetylcholine-induced vasodilation in vitro and in vivo using the TRPV4 knockout (TRPV4 −/− ) mice model. Carotid arteries were isolated and preconstricted with the thromboxane A2 mimetic U46619. Concentration-dependent relaxations to acetylcholine (10 −9 –10 −5 M) were markedly reduced in carotids of TRPV4 −/− vs. wild-type (WT) mice (maximal relaxations of 31±12% vs 53±4%, respectively; n=4 mice). There was no significant change in the ED50 for Ach. In both WT and TRPV4 −/− , acetylcholine-induced relaxations were blocked and converted to constrictions by the NO synthase inhibitor L-NAME (maximal relaxations of −25±6% and −24±7%, respectively). There was no difference in papaverine-induced relaxations between WT and TRPV4 −/− mice (maximal relaxations of 93±3% vs. 90±3%, respectively). U46619 caused similar contractions in carotid arteries from those mice. We also compared in vivo vasodilator effects of acetylcholine by measuring changes in blood pressure in those animals. Intravenous administration of acetylcholine (15 ng/gm bolus) decreased blood pressure by 32±6 mmHg in WT mice (from 90±15 to 57±10 mmHg; n=6), whereas blood pressure was reduced by only 10 mmHg in TRPV4 −/− mice (from 67±6 to 56±4 mmHg; n=12). Acetylcholine caused similar reductions in heart rate in WT and TRPV4 −/− mice, with mean changes of 365±57 and 292±40 beats/min, respectively. We conclude that the endothelium-dependent vasodilator response to acetylcholine is reduced both in vitro and in vivo in TRPV4 −/− mice, and these findings may provide novel insight into the mechanisms of Ca 2+ entry evoked by chemical agonists in endothelial cells. The paradoxically lower baseline blood pressure in TRPV4 −/− mice requires further investigation.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Pimonrat Ketsawatsomkron ◽  
Deborah R Davis ◽  
Aline M Hilzendeger ◽  
Justin L Grobe ◽  
Curt D Sigmund

PPARG, a ligand-activated transcription factor plays a critical role in the regulation of blood pressure and vascular function. We hypothesized that smooth muscle cell (SMC) PPARG protects against hypertension (HT) and resistance vessel dysfunction. Transgenic mice expressing dominant negative PPARG (S-P467L) in SMC or non-transgenic controls (NT) were implanted with DOCA pellet and allowed ad libitum access to 0.15 M NaCl for 21 days in addition to regular chow and water. Blood pressure was monitored by telemetry and mesenteric arterial (MA) function was assessed by pressurized myograph. At baseline, 24-hour mean arterial pressure (MAP) was similar between NT and S-P467L mice, while the transgenic mice were tachycardic. DOCA-salt increased MAP to a much greater degree in S-P467L mice (Δ MAP; S-P467L: +34.2±6.0, NT: +13.3±5.7, p<0.05 vs NT). Heart rate was similarly decreased in both groups after DOCA-salt. Vasoconstriction to KCl, phenylephrine and endothelin-1 did not differ in MA from DOCA-salt treated NT and S-P467L, while the response to vasopressin was significantly reduced in S-P467L after DOCA-salt (% constriction at 10-8 M, S-P467L: 31.6±5.6, NT: 46.7±3.8, p<0.05 vs NT). Urinary copeptin, a surrogate marker for arginine vasopressin was similar in both groups regardless of treatment. Vasorelaxation to acetylcholine was slightly impaired in S-P467L MA compared to NT at baseline whereas this effect was further exaggerated after DOCA-salt (% relaxation at 10-5 M, S-P467L: 56.1±8.3, NT: 79.4±5.6, p<0.05 vs NT). Vascular morphology at luminal pressure of 75 mmHg showed a significant increase in wall thickness (S-P467L: 18.7±0.8, NT: 16.0±0.4, p<0.05 vs NT) and % media/lumen (S-P467L: 8.4±0.3, NT: 7.1±0.2, p<0.05 vs NT) in S-P467L MA after DOCA-salt. Expression of tissue inhibitor of metalloproteinases (TIMP)-4 and regulator of G-protein signaling (RGS)-5 transcript were 2- and 3.5-fold increased, respectively, in MA of NT with DOCA-salt compared to NT baseline. However, this induction was markedly blunted in S-P467L MA. We conclude that interference with PPARG function in SMC leads to altered gene expression crucial for normal vascular homeostasis, thereby sensitizing the mice to the effects of DOCA-salt induced HT and vascular dysfunction.


2007 ◽  
Vol 292 (3) ◽  
pp. H1390-H1397 ◽  
Author(s):  
Sean P. Marrelli ◽  
Roger G. O'Neil ◽  
Rachel C. Brown ◽  
Robert M. Bryan

We previously demonstrated that endothelium-derived hyperpolarizing factor (EDHF)-mediated dilations in cerebral arteries are significantly reduced by inhibitors of PLA2. In this study we examined possible mechanisms by which PLA2 regulates endothelium-dependent dilation, specifically whether PLA2 is involved in endothelial Ca2+ regulation through stimulation of TRPV4 channels. Studies were carried out with middle cerebral arteries (MCA) or freshly isolated MCA endothelial cells (EC) of male Long-Evans rats. Nitro-l-arginine methyl ester (l-NAME) and indomethacin were present throughout. In pressurized MCA, luminally delivered UTP produced increased EC intracellular Ca2+ concentration ([Ca2+]i) and MCA dilation. Incubation with PACOCF3, a PLA2 inhibitor, significantly reduced both EC [Ca2+]i and dilation responses to UTP. EC [Ca2+]i was also partially reduced by a transient receptor potential vanilloid (TRPV) channel blocker, ruthenium red. Manganese quenching experiments demonstrated Ca2+ influx across the luminal and abluminal face of the endothelium in response to UTP. Interestingly, PLA2-sensitive Ca2+ influx occurred primarily across the abluminal face. Luminal application of arachidonic acid, the primary product of PLA2 and a demonstrated activator of certain TRPV channels, increased both EC [Ca2+]i and MCA diameter. TRPV4 mRNA and protein was demonstrated in the endothelium by RT-PCR and immunofluorescence, respectively. Finally, application of 4α-phorbol 12,13-didecanoate (4αPDD), a TRPV4 channel activator, produced an increase in EC [Ca2+]i that was significantly reduced in the presence of ruthenium red. We conclude that PLA2 is involved in EC Ca2+ regulation through its regulation of TRPV4 channels. Furthermore, the PLA2-sensitive component of Ca2+ influx may be polarized to the abluminal face of the endothelium.


2020 ◽  
Vol 319 (1) ◽  
pp. H144-H158 ◽  
Author(s):  
Rakhee Gupte ◽  
Vidhi Dhagia ◽  
Petra Rocic ◽  
Rikuo Ochi ◽  
Sachin A. Gupte

In this study we have identified a novel isozyme of glucose-6-phosphate dehydrogenase (G6PD), a metabolic enzyme, that interacts with and contributes to regulate smooth muscle cell L-type Ca2+ ion channel function, which plays a crucial role in vascular function in physiology and pathophysiology. Furthermore, we demonstrate that expression and activity of this novel G6PD isoform are increased in arteries of individuals with metabolic syndrome and in inhibition of G6PD activity in rats of metabolic syndrome reduced blood pressure.


2007 ◽  
Vol 293 (5) ◽  
pp. H3072-H3079 ◽  
Author(s):  
David M. Harris ◽  
Heather I. Cohn ◽  
Stéphanie Pesant ◽  
Rui-Hai Zhou ◽  
Andrea D. Eckhart

More than 30% of the US population has high blood pressure (BP), and less than a third of people treated for hypertension have it controlled. In addition, the etiology of most high BP is not known. Having a better understanding of the mechanisms underlying hypertension could potentially increase the effectiveness of treatment. Because Gq signaling mediates vasoconstriction and vascular function can cause BP abnormalities, we were interested in determining the role of vascular smooth muscle (VSM) Gq signaling in two divergent models of hypertension: a renovascular model of hypertension through renal artery stenosis and a genetic model of hypertension using mice with VSM-derived high BP. Inhibition of VSM Gq signaling attenuated BP increases induced by renal artery stenosis to a similar extent as losartan, an ANG II receptor blocker and current antihypertensive therapy. Inhibition of Gq signaling also attenuated high BP in our genetic VSM-derived hypertensive model. In contrast, BP remained elevated 25% following treatment with losartan, and prazosin, an α1-adrenergic receptor antagonist, only decreased BP by 35%. Inhibition of Gq signaling attenuated VSM reactivity to ANG II and resulted in a 2.4-fold rightward shift in EC50. We also determined that inhibition of Gq signaling was able to reverse VSM hypertrophy in the genetic VSM-derived hypertensive model. These results suggest that Gq signaling is an important signaling pathway in two divergent models of hypertension and, perhaps, optimization of antihypertensive therapy could occur with the identification of particular Gq-coupled receptors involved.


Sign in / Sign up

Export Citation Format

Share Document