scholarly journals Assessment and Validation of a Phenotype-Enhanced Variant Classification Framework to Promote or Demote RYR2 Missense Variants of Uncertain Significance

Author(s):  
John R. Giudicessi ◽  
Krystien V.V. Lieve ◽  
Ram K. Rohatgi ◽  
Faruk Koca ◽  
David J. Tester ◽  
...  
2020 ◽  
Vol 13 (5) ◽  
pp. 453-459
Author(s):  
Connor L. Mattivi ◽  
J. Martijn Bos ◽  
Richard D. Bagnall ◽  
Natalie Nowak ◽  
John R. Giudicessi ◽  
...  

Background: Missense variants in the MYH7 -encoded MYH7 (beta myosin heavy chain 7) represent a leading cause of hypertrophic cardiomyopathy (HCM). MYH7 -specific American College of Medical Genetics and Genomics (ACMG) variant classification guidelines were released recently but have yet to be assessed independently. We set out to assess the performance of the MYH7 -specific ACMG guidelines and determine if the addition of phenotype-enhanced criteria (PE-ACMG) using the HCM Genotype Predictor Score can further reduce the burden of variants of uncertain significance (VUS). Methods: Re-assessment was performed on 70 MYH7 -variants in 121 unique patients from Mayo Clinic, and an independent cohort of 54 variants in 70 patients from Royal Prince Alfred Hospital (Australia). Qualifying variants were re-adjudicated using both standard ACMG and MYH7 -ACMG guidelines, and HCM Genotype Predictor Score was used to provide a validated measure of strength of clinical phenotype to be incorporated into the MYH7 -ACMG framework. Results: Among Mayo Clinic identified variants, 11/70 (16%) were classified as pathogenic (P), 10/70 (14%) as likely pathogenic, and 49/70 (70%) as a VUS. A similar distribution was seen in the Australian patients (12/54 [22%] P, 12/54 [22%] likely pathogenic, and 30/54 [56%] VUS; P =not significant). Application of the MYH7 -ACMG resulted in a nonsignificant reduction of the VUS burden in both cohorts from 49/70 to 39/70 (56%; P =0.1; Mayo Clinic) and from 30/54 to 20/54 (37%; P =0.1; Australia). Using the combined PE-MYH7-ACMG framework, the VUS decreased significantly from 49 to 27 ( P <0.001, Mayo Clinic) and from 30 to 16 ( P <0.001; Australia). Conclusions: Use of the MYH7 -specific guidelines alone failed to significantly decrease VUS burden in 2 independent cohorts. However, a significant reduction in VUS burden was observed after the addition of phenotypic criteria. Using a patient’s strength of sarcomeric HCM phenotype for variant adjudication can increase significantly the clinical utility of genetic testing for patients with HCM.


2020 ◽  
Author(s):  
Lidia Feliubadaló ◽  
Alejandro Moles-Fernández ◽  
Marta Santamariña-Pena ◽  
Alysson T Sánchez ◽  
Anael López-Novo ◽  
...  

Abstract Background Gene panel testing by massive parallel sequencing has increased the diagnostic yield but also the number of variants of uncertain significance. Clinical interpretation of genomic data requires expertise for each gene and disease. Heterozygous ATM pathogenic variants increase the risk of cancer, particularly breast cancer. For this reason, ATM is included in most hereditary cancer panels. It is a large gene, showing a high number of variants, most of them of uncertain significance. Hence, we initiated a collaborative effort to improve and standardize variant classification for the ATM gene. Methods Six independent laboratories collected information from 766 ATM variant carriers harboring 283 different variants. Data were submitted in a consensus template form, variant nomenclature and clinical information were curated, and monthly team conferences were established to review and adapt American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria to ATM, which were used to classify 50 representative variants. Results Amid 283 different variants, 99 appeared more than once, 35 had differences in classification among laboratories. Refinement of ACMG/AMP criteria to ATM involved specification for twenty-one criteria and adjustment of strength for fourteen others. Afterwards, 50 variants carried by 254 index cases were classified with the established framework resulting in a consensus classification for all of them and a reduction in the number of variants of uncertain significance from 58% to 42%. Conclusions Our results highlight the relevance of data sharing and data curation by multidisciplinary experts to achieve improved variant classification that will eventually improve clinical management.


2020 ◽  
Vol 22 (5) ◽  
pp. 825-830 ◽  
Author(s):  
Jennifer N. Dines ◽  
Brian H. Shirts ◽  
Thomas P. Slavin ◽  
Tom Walsh ◽  
Mary-Claire King ◽  
...  

Abstract Purpose Guidelines for variant interpretation incorporate variant hotspots in critical functional domains as evidence for pathogenicity (e.g., PM1 and PP2), but do not use “coldspots,” that is, regions without essential functions that tolerate variation, as evidence a variant is benign. To improve variant classification we evaluated BRCA1 and BRCA2 missense variants reported in ClinVar to identify regions where pathogenic missenses are extremely infrequent, defined as coldspots. Methods We used Bayesian approaches to model variant classification in these regions. Results BRCA1 exon 11 (~60% of the coding sequence), and BRCA2 exons 10 and 11 (~65% of the coding sequence), are coldspots. Of 89 pathogenic (P) or likely pathogenic (LP) missense variants in BRCA1, none are in exon 11 (odds <0.01, 95% confidence interval [CI] 0.0–0.01). Of 34 P or LP missense variants in BRCA2, none are in exons 10–11 (odds <0.01, 95% CI 0.0–0.01). More than half of reported missense variants of uncertain significance (VUS) in BRCA1 and BRCA2 are in coldspots (3115/5301 = 58.8%). Reclassifying these 3115 VUS as likely benign would substantially improve variant classification. Conclusion In BRCA1 and BRCA2 coldspots, missense variants are very unlikely to be pathogenic. Classification schemes that incorporate coldspots can reduce the number of VUS and mitigate risks from reporting benign variation as VUS.


2020 ◽  
Vol 112 (12) ◽  
pp. 1275-1279 ◽  
Author(s):  
Anne S Reiner ◽  
Mark E Robson ◽  
Lene Mellemkjær ◽  
Marc Tischkowitz ◽  
Esther M John ◽  
...  

Abstract Whether radiation therapy (RT) affects contralateral breast cancer (CBC) risk in women with pathogenic germline variants in moderate- to high-penetrance breast cancer–associated genes is unknown. In a population-based case-control study, we examined the association between RT; variants in ATM, BRCA1/2, or CHEK2*1100delC; and CBC risk. We analyzed 708 cases of women with CBC and 1399 controls with unilateral breast cancer, all diagnosed with first invasive breast cancer between 1985 and 2000 and aged younger than 55 years at diagnosis and screened for variants in breast cancer–associated genes. Rate ratios (RR) and 95% confidence intervals (CIs) were estimated using multivariable conditional logistic regression. RT did not modify the association between known pathogenic variants and CBC risk (eg, BRCA1/2 pathogenic variant carriers without RT: RR = 3.52, 95% CI = 1.76 to 7.01; BRCA1/2 pathogenic variant carriers with RT: RR = 4.46, 95% CI = 2.96 to 6.71), suggesting that modifying RT plans for young women with breast cancer is unwarranted. Rare ATM missense variants, not currently identified as pathogenic, were associated with increased risk of RT-associated CBC (carriers of ATM rare missense variants of uncertain significance without RT: RR = 0.38, 95% CI = 0.09 to 1.55; carriers of ATM rare missense variants of uncertain significance with RT: RR = 2.98, 95% CI = 1.31 to 6.80). Further mechanistic studies will aid clinical decision-making related to RT.


2013 ◽  
Vol 58 (9) ◽  
pp. 618-621 ◽  
Author(s):  
Shogo Kawaku ◽  
Rieko Sato ◽  
Hao Song ◽  
Yuko Bando ◽  
Tadao Arinami ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. e240682
Author(s):  
Helen Stolyar ◽  
Teresa Berry ◽  
Amit Pal Singh ◽  
Ichhcha Madan

We present a case of isolated fetal ascites diagnosed at 20 weeks’ gestation. No aetiology was identified on extensive prenatal workup, including prenatal microarray. The patient terminated the pregnancy at 23 weeks’ gestation. Exome sequencing was performed on the products of conception, which ended up giving insight into a possible cause for the ascites. Two heterozygous missense variants of uncertain significance were identified in the PIEZO1 gene. The paternal variant has been linked to dehydrated hereditary stomatocytosis. The father of the baby suffers from haemolytic anaemia, splenomegaly and has had jaundice throughout his life. His brother and father have similar conditions. We suspect that at least one of the gene variants identified in our exome sequencing may be responsible for the illness that runs in this family, including the fetus with isolated ascites.


2020 ◽  
Vol 41 (8) ◽  
pp. 1407-1424
Author(s):  
Monica H. N. Thai ◽  
Alison Gardner ◽  
Laura Redpath ◽  
Tessa Mattiske ◽  
Oliver Dearsley ◽  
...  

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 1531-1531
Author(s):  
Shijie Wu ◽  
Jiaojiao Zhou ◽  
Yiding Chen

1531 Background: Inherited PALB2 pathogenic variants are associated with an increased lifetime risk for breast cancer development. However, the interpretation of numerous PALB2 missense variants of uncertain significance (VUS) identified in germline genetic testing remains a challenge. Here, we assessed the impact of breast cancer patient-derived VUS on PALB2 function and identified pathogenic PALB2 missense variants that may increase cancer risk. Methods: A total of seven potentially pathogenic PALB2 VUS identified in 2,279 breast cancer patients were selected for functional analysis. All these selected VUS were assessed by SIFT, Align-GVGD, and PolyPhen2 in silico and were predicted to be deleterious by at least two in silico algorithms. The p.L35P [c.104T > C] variant was also included, for which pathogenicity has been recently confirmed. The effects of the VUS on the homologous recombination (HR) activity of PALB2 were tested by U2OS/DR-GFP reporting system. Functional characterization was further validated by protein co-immunoprecipitation and RAD51 recruitment assay. Results: PALB2 variants p.L24F [c.72G > C] and p.L35P [c.104T > C] showed the most significant disruption to the HR activity of PALB2 relative to the wild-type condition, retaining only 52.2% ( p = 0.0013) and 8.5% ( p < 0.0001) of HR activity respectively. Moderate but statistically significant HR deficiency was observed for four other variants (p.P405A [c.1213C > G], p.T1012I [c.3035C > T], p.E1018D [c.3054G > C], and p.T1099M [c.3296C > T]). We found no statistical differences for the p.K628N [c.1884G > T] and p.R663C [c.1987C > T] in the HR activity compared to wild-type PALB2. The p.L24F and p.L35P variants compromised the BRCA1-PALB2 interaction and reduced RAD51 foci formation in response to DNA damage. Conclusions: We have identified a novel patient-derived pathogenic PALB2 missense variant, p.L24F [c.72G > C], that compromises PALB2-mediated HR activity. We suggest the integration of the identified pathogenic variants into breast cancer genetic counseling and individualized treatment regimens for better clinical outcomes.


Sign in / Sign up

Export Citation Format

Share Document