Abstract 495: A Novel Test for Low Salt Sensitivity: Angiotensin type-II Receptor Recruitment After Dopamine-1 Receptor Stimulation in Urine-Derived Renal Proximal Tubule Cells

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
John J Gildea ◽  
Staci A Keene ◽  
Dylan T Lahiff ◽  
Robert E Van Sciver ◽  
Cynthia D Schoeffel ◽  
...  

Salt-sensitivity of blood pressure is an inappropriate increase in blood pressure following high salt intake. Subjects in our clinical study were typed according to their salt-sensitivity status into 3 categories: High-Salt-Sensitive (HSS; ≥ 7 mmHg increase in mean arterial pressure (MAP) on a high salt diet of 300 mEq of sodium, 17% prevalence), Low-Salt-Sensitive (LSS:, who paradoxically showed a ≥ 7 mmHg increase in MAP on a low salt diet of 10 mEq of sodium, 11% prevalence), and Salt-Resistant (SR, individuals who showed no significant increase in blood pressure on either diet, 72% prevalence). We previously demonstrated that LSS subjects show increased recruitment of the natriuretic dopamine-1 receptor (D1R) to the plasma membrane following a salt stimulation as compared to HSS subjects. Stimulation of the D1R in RPTC with fenoldopam (dopaminergic agonist) results in recruitment of the natriuretic angiotensin type-2 receptor (AT2R) to the cell surface. We hypothesized that LSS individuals may also demonstrate an enhanced AT2R RPTC membrane recruitment compared to HSS individuals when challenged with fenoldopam. In order to gain access to fresh RPTC from each subject, we isolated exfoliated RPTC from randomly voided urine from SR, LSS, and HSS subjects from our clinical study. We measured three subjects from each category with a minimum of three voids for each subject. We counted individual cells as independent events using both the confocal microscope (n=245) and the flow cytometer (n=5344). We found an inverse correlation between AT2R recruitment and the degree of salt-sensitivity of blood pressure. Fenoldopam stimulated AT2R recruitment as measured by confocal microscopy (y = -0.0047x + 0.4966, R2 = 0.2488, P<0.0001) and flow cytometry (y =-0.057x + 1.5645, R2=0.2912, P=0.0185). Flow cytometry provided a more sensitive diagnostic for LSS than HSS subjects. AT2R recruitment was more predictive of LSS than HSS. AT2R recruitment may be used as a rapid method to test for LSS individuals who need to be identified and encouraged to increase their sodium intake in order to avoid paradoxical hypertension.

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
John J Gildea ◽  
Dylan T Lahiff ◽  
Staci A Keene ◽  
Robert E Van Sciver ◽  
Robert M Carey ◽  
...  

Salt-sensitivity of blood pressure (BP) is a cardiovascular risk that affects 25% of the world’s population due to its resulting hypertension, although independent of BP. Salt-sensitivity is detected with a two week controlled diet, which is difficult to administer in the clinical setting. We therefore developed a rapid method of diagnosis based on exfoliated renal proximal tubule cells (RPTC) in urine. Subjects were divided into 3 salt sensitivity index categories: High-Salt-Sensitive (HSS; ≥ 7 mmHg increase in mean arterial pressure (MAP) on a high salt diet of 300 mEq of sodium, 17%prevalence), Low-Salt-Sensitive (LSS; ≥ 7 mmHg increase in MAP on a low salt diet of 10 mEq of sodium, 11% prevalence) and Salt Resistant (SR; ≤ 7 mmHg increase in MAP on both high and low salt diets, 72% prevalence) (Carey et al., in review). Three individuals were analyzed in each category on a minimum of 3 separate occasions. Cells were isolated from urine using centrifugation and measured for dopamine-1 receptor (D1R) plasma membrane recruitment using fluorescently-labeled antibodies under a confocal microscope as well as in a flow cytometer. Confocal microscopy analysis (total of 100 RPTCs for the 9 subjects) showed a negative correlation between salt-sensitivity index and D1R surface recruitment in RPTCs in their response to salt stimulation (y = -0.0073x + 0.5248, p = 0.0159). Flow cytometry analysis (total of 4938 RPTCs for the 9 subjects) also demonstrated a negative correlation between salt-induced D1R recruitment and salt-sensitivity (y = -2.547x + 239.97, p < 0.0001). Flow cytometry analysis showed a greater degree of separation amongst the subjects than confocal microscopy analysis, and would allow for a rapid diagnostic use of exfoliated renal cells in urine. Cryopreserved RPTCs (viability = 57.16% ± 9.15%, n = 12) compare favorably with cell viability from freshly voided urine cells and were still capable of eliciting intracellular sodium-mediated D1R recruitment. Cryopreservation thus enables batch collection, transport and processing of specimens between sites. We expect these procedures to provide a novel and convenient method of diagnosing the salt-sensitivity index in humans.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Julia M Carlson ◽  
John J Gildea ◽  
Cynthia D Schoeffel ◽  
Robert M Carey ◽  
Robin A Felder

Definitive biomarkers are needed in order to improve diagnostics for salt-sensitivity of blood pressure and hypertension. Exosomes are small vesicles, 50-90 nm in diameter, released from renal tubular epithelial cells into urine, which may contain sub-cellular components that could serve as diagnostic biomarkers. Total miRNA (miRNome) in urinary exosomes has not been previously examined for disease biomarkers, particularly for hypertension and/or salt sensitivity. Following ultracentrifugation of urine, total RNA was collected from urinary exosomes and analyzed by array analysis by LC Sciences (miRBase Human version 18). Three samples per individual of urinary exosomes were isolated and pooled from five human subjects previously typed for salt-sensitivity index from a prior clinical study using a two week controlled sodium diet. Patients were stratified according to salt sensitivity status: High salt-sensitive (HSS) patients’ mean arterial blood pressure (MAP) increased on high salt diet by >7mmHg, low salt-sensitive (LSS) patients MAP increased on low salt diet by >7mmHg, and salt-resistant (SR) patients MAP changed <7mmHg between the high and low salt diet. 306 miRNA targets out of 1898 probes were above background providing the first data for urinary exosome miRNome in humans (n=5). Bioinformatic analysis determined 20 significant differences in miRNome patterns between the HSS, SR, and LSS individuals (n=4, P<0.01). These data demonstrate the first examination of the urinary exosomal miRNome as it relates to sodium-induced blood pressure changes and suggest that it may constitute a convenient diagnostic test for salt-sensitivity of blood pressure.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Peng Xu ◽  
John J Gildea ◽  
Mahabuba Akhter ◽  
Robert M Carey ◽  
Wei Yue ◽  
...  

Salt sensitivity affects approximately 20% of adults worldwide and has similar mortality and morbidity sequalae as hypertension. Research has focused on the harmful effects of a high salt diet but have not focused on the harmful effects of a low salt diet. Inverse salt sensitive (ISS) individuals require high salt intake in order to maintain a normal blood pressure. Aldosterone increases ENaC and sodium reabsorption via the mineralocorticoid receptor (MR). We previously reported that αENaC was significantly lower in ISS renal tubule cells isolated from urine (uRTC), while these cells showed higher ENaC like activities under trypsin stimulation. We hypothesized that aldosterone may act as a stimulus and play a role in ISS high blood pressure on a low salt diet (LSD). Plasma aldosterone was significantly increased on LSD in all salt study participants, and ISS individuals showed the highest aldosterone level (ISS HS 3.8±0.38, n=26; ISS LS 35±3.38, n=22; SR HS 4.34±0.18, n=180; SR LS 32.62±1.6, n=152; SS HS 4.65±0.35, n=43; SS LS 26.08±2.18, n=38; HS Vs LS, p<0.001, two-way ANOVA). Moreover, both aldosterone and plasma renin activity (PRA) were significantly lower in salt sensitive (SS) individuals on LSD (PRA LS: ISS 6.05±0.87, n=17; SR 5.94±0.36, n=108; SS 4.43±0.57, n=34; p<0.05, one-way ANOVA), indicating LSD was protective to SS individuals. Treatment of uRTCs with 1 μM aldosterone increased MR and αENaC expression in ISS but not in SR (salt resistant) cells (MR: SR VEH 12164±213; SR Aldosterone 12327±128; ISS VEH 12128±40 vs ISS Aldosterone 13506±128, n=3, p<0.001, two-way ANOVA; αENaC: SR VEH 5023±46; SR Aldosterone 4895±55; ISS VEH 4270±21 vs ISS Aldosterone 5013±113, n=3, p<0.001, two-way ANOVA). High salt treatment further decreased MR in ISS but not in SR cells (ISS: 142mM 11066±188 vs 192mM 10425±74; p<0.05, n=3 two-way ANOVA). These results are consistent with the hypothesis that ISS individuals retain excess Na + and exhibit decreased BP when compared to SR or SS individuals under high salt diet, but reabsorb more sodium and exhibit elevated blood pressure under low salt diet. Higher circulating aldosterone and ex-vivo urine derived renal cell aldosterone sensitivity under low salt conditions may be a novel diagnostic test to identify ISS individuals.


Hypertension ◽  
2005 ◽  
Vol 45 (5) ◽  
pp. 853-859 ◽  
Author(s):  
Magdalena Gonzalez ◽  
Lorena Lobos ◽  
Felipe Castillo ◽  
Lorna Galleguillos ◽  
Nandy C. Lopez ◽  
...  

1998 ◽  
Vol 275 (2) ◽  
pp. R410-R417 ◽  
Author(s):  
Atsushi Sakima ◽  
Hiroshi Teruya ◽  
Masanobu Yamazato ◽  
Rijiko Matayoshi ◽  
Hiromi Muratani ◽  
...  

Systemic inhibition of nitric oxide synthase (NOS) evokes hypertension, which is enhanced by salt loading, partly via augmented sympathetic activity. We investigated whether inhibition of brain NOS elevates blood pressure (BP) in normotensive rats and, if so, whether the BP elevation is enhanced by salt loading. After a 2-wk low-salt (0.3%) diet, male Sprague-Dawley (SD) rats were divided into four groups. Groups 1 and 2 received a chronic intracerebroventricular infusion of 0.5 mg ⋅ kg−1 ⋅ day−1of N G-monomethyl-l-arginine (l-NMMA), and groups 3 and 4 were given artificial cerebrospinal fluid (aCSF). Groups 1 and 3 were placed on a high-salt (8%) diet, whereas groups 2 and 4 were on a low-salt diet. On day 9or 10, group 1 showed significantly higher mean arterial pressure (MAP) in a conscious unrestrained state (129 ± 3 mmHg vs. 114 ± 3, 113 ± 1, and 108 ± 3 mmHg in groups 2, 3, and 4, respectively, P < 0.05). On a high-salt diet, response of renal sympathetic nerve activity but not of BP to air-jet stress was significantly larger in rats givenl-NMMA than in rats given aCSF (29 ± 4% vs. 19 ± 3%, P < 0.05). When the intracerebroventricular infusions were continued for 3 wk, MAP was significantly higher in rats givenl-NMMA than in rats given aCSF irrespective of salt intake, although the difference was ∼7 mmHg. Thus chronic inhibition of NOS in the brain only slightly elevates BP in SD rats. Salt loading causes a more rapid rise in BP. The mechanisms of the BP elevation and its acceleration by salt loading remain to be elucidated.


2020 ◽  
Author(s):  
Qiong Ma ◽  
Chao Chu ◽  
Yanbo Xue ◽  
Yu Yan ◽  
Jiawen Hu ◽  
...  

Abstract Background: Salt is a crucial factor for blood pressure modulation, especially in salt-sensitive individuals. Sphingosine-1-phosphate (S1P), a pleiotropic bioactive sphingolipid metabolite participating in blood pressure regulation, has recently been identified as a novel lipid diuretic factor. However, the relationships among salt intake, circulating S1P levels, and blood pressure changes in human beings are unknown. Thus, we conducted this intervention trial to explore the effect of dietary salt intake on plasma S1P levels and to examine the relationship between S1P and blood pressure in Chinese adults.Methods: 42 participants (aged 18–65 years) were recruited from a rural community in Shaanxi, China. All participants first maintained their normal diet for 3 days, then sequentially ate a low-sodium diet (3.0 g/day NaCl) for 7 days, followed by a high-sodium diet (18.0 g/day NaCl) for 7 days. We assessed their plasma S1P concentrations on the last day of each intervention phase by liquid chromatography-tandem mass spectrometry. We classified the subjects who demonstrated at least a 10% increase in mean arterial pressure upon transitioning from a low-salt to a high-salt diet as salt-sensitive and the others as salt-resistant. Differences in repeated measures were analyzed by repeated-measures analysis of variance. Results: Plasma S1P levels decreased significantly from the baseline to low-salt diet period and increased from the low-salt to high-salt diet period. We observed this response in both salt-sensitive and salt-resistant individuals. Plasma S1P levels positively correlated with 24-hour urinary sodium excretion, but not 24-hour urinary potassium excretion. In line with plasma S1P level responses to salt intervention, systolic blood pressure (SBP) and mean arterial pressure (MAP) decreased from the baseline to low-salt diet period and increased from the low-salt to high-salt period. SBP positively correlated with plasma S1P and the correlation was stronger in salt-sensitive individuals than that in salt-resistant individuals. Conclusion: Low-salt dietary intervention decreases plasma S1P levels, whereas high-salt intervention reverses this change and S1P levels positively correlated with SBP in Chinese adults. This provides a high-efficiency and low-cost intervention for plasma S1P levels modulation, with implications for salt-induced blood pressure modulation. Trial registration: NCT02915315. Registered 27 September 2016, http://www.clinicaltrials.gov


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Ashley L Pitzer ◽  
Melis Sahinoz ◽  
Michael Raddatz ◽  
Celestine Wanjalla ◽  
Suman Pakala ◽  
...  

Salt sensitivity of blood pressure is an independent predictor of death due to cardiovascular events. Diagnosis of salt-sensitivity is not feasible in the clinic, making it difficult to investigate therapeutic strategies. We hypothesized that NLRP3-inflammasome and IL-1β production in monocytes plays a role in salt-sensitive hypertension. We phenotyped salt-sensitivity of blood pressure using an acute inpatient Weinberger protocol of an isocaloric high salt diet and rapid intravenous salt-loading, followed by low salt diet and furosemide-induced salt-depletion. Ambulatory blood pressure was continuously monitored and averaged for the days of salt-loading and salt-depletion. Blood samples were obtained at baseline, salt-loading, and after salt-depletion. Median age was 54 years (44-55), 3 of the 5 subjects were female, screening systolic blood pressure was 140 mmHg (134-148), diastolic blood pressure was 88 mmHg (84-99), and BMI was 35 kg/m 2 (30-39). Using cell hashing and ECCITE-seq analysis, we profiled transcriptomes in multiple immune cell types using antibody-derived tags (ADTs). UMAP clustering of different cell types were identified by ADTs including monocyte markers CD14 and CD16. Interestingly, UMAP visualization of CD14+ and CD16+ clusters indicated a greater decrease in CD14+ clusters after salt-depletion in the salt-resistant subjects than the salt-sensitive; however the salt-sensitive subjects had a greater decrease in CD16+ clusters than the salt-resistant group after both salt-loading and salt-depletion. These data were confirmed using flow cytometry. Unlike in salt-resistant participants, we found that within monocyte clusters, salt-sensitivity was associated with down regulation of the inflammasome components NLRP3 (0.386 ± 1.18 vs. 0.197 ± 0.778) and IL-1β (0.858 ± 2.32 vs. 0.159 ± 0.925) following salt-depletion. Using flow cytometry, we found Δ% isoLG+ CD14+/CD16+ monocytes correlated with salt-sensitivity of blood pressure (r=0.88, 95% CI, p=0.05). These results suggest that the inflammasome and monocyte activation are dynamically regulated by dietary salt in vivo and can serve as a potential diagnostic biomarker for salt-sensitivity of blood pressure.


1996 ◽  
Vol 271 (1) ◽  
pp. R109-R114 ◽  
Author(s):  
S. W. John ◽  
A. T. Veress ◽  
U. Honrath ◽  
C. K. Chong ◽  
L. Peng ◽  
...  

Atrial natriuretic peptide (ANP)-gene knockout mice of three genotypes (+/+, +/-, and -/-) were maintained on a low-salt diet (0.008% NaCl). They were then fed either the same low-salt diet or a high-salt diet (8% NaCl) for 1 wk. No differences were found among genotypes in daily food and water intakes or in urinary volume and electrolyte excretions. Arterial blood pressures measured in anesthetized animals at the end of the dietary regimen were significantly and similarly increased in -/- compared with +/+ mice on each diet. Renal excretion of fluid and electrolytes was measured in anesthetized mice before and after acute blood volume expansion. No genotype differences were observed before volume expansion. After volume expansion the wild-type (+/+) mice had much greater saluretic responses than either the heterozygous (+/-) or the homozygous mutant (-/-) animals on the low-salt diet but not on the high-salt diet. We conclude that ANP lowers blood pressure in the absence of detected changes in renal function; ANP is not essential for normal salt balance, even on high-salt intake; and ANP is essential for the natriuretic response to acute blood volume expansion on a low-salt but not high-salt intake.


2017 ◽  
Vol 313 (4) ◽  
pp. R425-R437 ◽  
Author(s):  
Bryan K. Becker ◽  
Amanda C. Feagans ◽  
Daian Chen ◽  
Malgorzata Kasztan ◽  
Chunhua Jin ◽  
...  

Hypertension is a prevalent pathology that increases risk for numerous cardiovascular diseases. Because the etiology of hypertension varies across patients, specific and effective therapeutic approaches are needed. The role of renal sympathetic nerves is established in numerous forms of hypertension, but their contribution to salt sensitivity and interaction with factors such as endothelin-1 are poorly understood. Rats deficient of functional ETB receptors (ETB-def) on all tissues except sympathetic nerves are hypertensive and exhibit salt-sensitive increases in blood pressure. We hypothesized that renal sympathetic nerves contribute to hypertension and salt sensitivity in ETB-def rats. The hypothesis was tested through bilateral renal sympathetic nerve denervation and measuring blood pressure during normal salt (0.49% NaCl) and high-salt (4.0% NaCl) diets. Denervation reduced mean arterial pressure in ETB-def rats compared with sham-operated controls by 12 ± 3 (SE) mmHg; however, denervation did not affect the increase in blood pressure after 2 wk of high-salt diet (+19 ± 3 vs. +16 ± 3 mmHg relative to normal salt diet; denervated vs. sham, respectively). Denervation reduced cardiac sympathetic-to-parasympathetic tone [low frequency-high frequency (LF/HF)] during normal salt diet and vasomotor LF/HF tone during high-salt diet in ETB-def rats. We conclude that the renal sympathetic nerves contribute to the hypertension but not to salt sensitivity of ETB-def rats.


Hypertension ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 158-168
Author(s):  
Ailsa F. Ralph ◽  
Celine Grenier ◽  
Hannah M. Costello ◽  
Kevin Stewart ◽  
Jessica R. Ivy ◽  
...  

Global salt intake averages >8 g/person per day, over twice the limit advocated by the American Heart Association. Dietary salt excess leads to hypertension, and this partly mediates its poor health outcomes. In ≈30% of people, the hypertensive response to salt is exaggerated. This salt-sensitivity increases cardiovascular risk. Mechanistic cardiovascular research relies heavily on rodent models and the C57BL6/J mouse is the most widely used reference strain. We examined the effects of high salt intake on blood pressure, renal, and vascular function in the most commonly used and commercially available C57BL6/J mouse strain. Changing from control (0.3% Na + ) to high salt (3% Na + ) diet increased systolic blood pressure in male mice by ≈10 mm Hg within 4 days of dietary switch. This hypertensive response was maintained over the 3-week study period. Returning to control diet gradually reduced blood pressure back to baseline. High-salt diet caused a rapid and sustained downregulation in mRNA encoding renal NHE3 (sodium-hydrogen-exchanger 3) and EnaC (epithelial sodium channel), although we did not observe a suppression in aldosterone until ≈7 days. During the development of salt-sensitivity, the acute pressure natriuresis relationship was augmented and neutral sodium balance was maintained throughout. High-salt diet increased ex vivo sensitivity of the renal artery to phenylephrine and increased urinary excretion of adrenaline, but not noradrenaline. The acute blood pressure–depressor effect of hexamethonium, a ganglionic blocker, was enhanced by high salt. Salt-sensitivity in commercially sourced C57BL6/J mice is attributable to sympathetic overactivity, increased adrenaline, and enhanced vascular sensitivity to alpha-adrenoreceptor activation and not sodium retention or attenuation of the acute pressure natriuresis response.


Sign in / Sign up

Export Citation Format

Share Document