Abstract MP10: Early Functional and Structural Alterations of Resistance Arteries in Mice Treated with an Inhibitor of the Vascular Endothelial Growth Factor Receptor
Background: Inhibition of tyrosine kinases receptors such as vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) improves outcomes in patients with cancers. Only VEGFR inhibitors, however, induce severe hypertension whose mechanisms remain unclear. We hypothesized that VEGFR inhibitors may induce early vascular functional and structural alterations, that may precede the development of hypertension. Methods and results: Normotensive SV-129 mice (8 weeks old, 5 for each group) were treated or not with the VEGFR inhibitor Vatalanib (VAT, 100 mg/Kg/day) or the EGFR inhibitor Gefitinib (GEF, 100 mg/Kg/day). Vehicle-treated control mice were also studied. Blood pressure (BP) was measured by tail-cuff method. Endothelium-dependent and -independent relaxations were assessed by concentration-response curves to acetylcholine (1 nM to 100 μM) ± L-NAME (100 μM) and sodium nitroprusside (10 nM to 1 mM) respectively, in mesenteric arteries pre-contracted with norepinephrine (10 μM). Media-to-lumen ratio (M/L, an index of early vascular remodeling), and cross sectional area (CSA) were evaluated on pressurized preparations. After two weeks, BP was similarly preserved in both VAT- and GEF-treated mice as compared to vehicle-treated mice (89.8±1.5 mmHg and 87.2±2.8 mmHg vs 92.2±2.2 mmHg, respectively, NS). Endothelium-dependent relaxation was similarly preserved in vehicle-treated and GEF-treated mice, whereas it was reduced in VAT-treated mice (-17% vs vehicle-treated mice, P<0.05). L-NAME blunted acetylcholine-induced relaxation in all groups except in VAT-treated mice, suggesting an impairment of NO production only in this group. Endothelium-independent relaxation was similar in all groups. Only VAT-treated mice presented increased M/L as compared to vehicle-treated mice (6.3±0.1% vs 5.4±0.1%, P<0.05). M/L resulted similar in GEF-treated and vehicle-treated mice. CSA was similar in all groups. Conclusion: In normotensive mice, only VAT promoted early vascular alterations such as endothelial dysfunction and vascular remodeling in resistance arteries. Those changes in the vasculature are distinctive of hypertension and might precede and sustain the development of the hypertensive disease.